

Alloy and SCR:
An Evaluation and Comparison

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425

{jerenkra,shendric}@ics.uci.edu

Justin R. Erenkrantz, Scott Hendrickson

Abstract
Alloy and SCRtool are two popular toolsets in the area of for-
mal methods. Therefore, it may be useful to evaluate these tools
and compare them in order to obtain a clearer picture of how
formal methods can be used in practice. Alloy is a constraint
checker built upon a strong mathematical foundation. How-
ever, use of Alloy involves a steep learning curve and the payoff
is delayed. It is an especially useful tool when the project is
expected to evolve. SCRtool provides the required tools to com-
pletely specify the external behavior of a system. However,
SCRtool could be improved in practice by encouraging the pro-
liferation of the toolset publicly, the creation of an unified SCR
semantic, and an improved user interface. Additionally, we
conclude, based upon our evaluation, that a mapping from
SCRtool to Alloy is feasible, while the mapping from Alloy to
SCRtool is a current open research question.

1. Introduction

According to one source, “formal methods is the applied
mathematics of computer system engineering.”[14] More con-
cretely, formal methods can be used to create a model of a sys-
tem in order to understand how the system will behave in the
real world. Due to the origins in mathematics and logic of for-
mal methods, these areas lend themselves to automated tools
that assist the developer in this discovery process.

Without tools, the process of validating and verifying these
requirements would be intractable. Even the smallest example
can pose difficulties in manually verifying and validating the
requirement without relying upon strong formalisms. This
challenge only increases as the system approaches the scope of
real-world systems. Therefore, in order to appropriately man-
age these specifications, an automated toolset will be required.

Alloy and SCRtool are two popular toolsets in this area of
formal methods. However, as we will discuss in this paper, they
take different approaches to helping apply these formal meth-
ods. Alloy is primarily a constraint checker that validates that a
specification is built upon a solid logical foundation. In con-
trast, SCR focuses on defining the external behavioral specifi-
cations of a system in order to understand how the system will
react to events and ensure that erroneous states are not encoun-
tered.

For the remainder of this paper, we will proceed along par-
allel tracks discussing Alloy and SCR. We start by providing
the necessary background for both Alloy and SCR in order to
understand what each tool can achieve. We will then continue
with an overview of the technical features of each tool. Next,

we will examine the functionality of each tool in order to
understand how the tool can aid in the creation and verification
of formal specifications. After this examination, we will work
through examples with each tool to demonstrate what the tool
can do.

Subsequently, we will then provide some observations that
we have arrived at after our exposure to these tools. Then, we
will perform a comparison between Alloy and SCR. In this sec-
tion, our main goal will be to differentiate these tools and place
them in their appropriate context within both the software engi-
neering and formal methods paradigm. In conclusion, we will
discuss some future work that may be needed in order to con-
duct better comparisons between these tools.

2. Alloy

Alloy is a tool that models and analyzes systems. It was
developed by MIT’s Software Design Group and formally
introduced in [12]. Alloy is intended to be used on a micro-
model of a system, which is one that is orders of magnitude
smaller than the actual system. There are two primary compo-
nents to Alloy: the Alloy language and the Alloy Analyzer.

The Alloy language [10] is a small modeling language that
can be used to express the basic structure of a model as well as
constraints and operations specifying how that structure may
change. It builds upon boolean algebra, set theory, quantifiers,
and first-order relational logic. Analysis of a specification writ-
ten using the Alloy language can be automated, which differen-
tiates it from its predecessors.

The starting point for the Alloy language was Z [17]. Alloy
addresses the following deficiencies of Z:

1. that it does not lend itself to automation
2. that it is incompatible with object modeling idioms, and
3. that it is dependent on LaTeX.

The Alloy Analyzer, previously called Alcoa [11], analyzes
a specification model written in the Alloy language. Since the
Alloy language is undecidable, it is not possible to provide a
sound and complete analysis of a specification. Instead, the
Alloy Analyzer finds models of formulas, that is assignments
of values, that make the formula true or that contradict the for-
mula within a given scope. These formula are expressed as
examples or counter-examples of a system.

A system with constraints that are too weak will have a
model that meets the constraints, but violates its assertions.
Such a model is referred to as a counter-example. A system
where the constraints are too strong (meaning that the con-
straints contradict each other) will have no model that satisfies
all the constraints since the model would have to contradict

itself. For such a system, Alloy tries to find a model, if it
does, then the model is referred to as an example.

It is important to note that when Alloy does not find a
counter-example demonstrating weak constraints in a given
scope, it does not mean that a counter-example will not
exist in a larger scope. However, in practice, if a counter-
example exists, it can typically be found in a small scope,
which indicates that the user can have a reasonable degree
of assurance about a system.

2.1. Language overview

The Alloy language uses a combination of boolean alge-
bra, set theory, quantifiers, and first-order relational logic.
The language expresses statements using ASCII characters.
Figure 1 shows an example Alloy specification from the
Alloy reference manual, which shows a specification’s
basic structure.[13]

It is important to discuss the concepts behind the Alloy
language before we discuss its syntax and expressiveness.

Atoms and Relationships
An atom is a typed entity that is indivisible, immutable,

and uninterpreted. This means that an atom cannot be bro-
ken into smaller parts, that it doesn’t change, and that it
doesn’t have any built-in meaning associated with it. Alloy
uses atoms to represent something in the real world or a
property about a system. Two atoms are equal if they are
the same atom.

Relationships group atoms into tuples, which are
ordered sequences of atoms. Relationships are also typed in
that each atom in a tuple must be of a certain type. A rela-
tionship type may specify one or more atom types, but not
zero. Relationships may then contain one or more tuples of
atoms of the specified types, or no tuples at all, in which
case the relationship is said to be empty. Relationships are
equal if they contain the same set of tuples (which of
course contain the same atoms).

It is important to note that Alloy does not differentiate
between scalars (an atom), tuples (an ordered set of atoms),
and sets of tuples (a relationship). They are all treated the
same. Therefore, an atom, A, a tuple containing only that
atom, (A), and a set containing that tuple, {(A)}, are all
considered to be identical.

For purposes of this discussion, we can consider a rela-

tion to be a table where each row is a tuple, and each col-
umn corresponds to the ith element in each tuple. This
would mean that the order of rows does not matter, since
each row represents a tuple in the set of tuples that makes
up the relationship. However, the order of columns does
matter because the order of atoms in each tuple is signifi-
cant.

It is possible to see that a relationship can represent
many different types of associations between atoms. For
example, a function may be expressed as a relationship by
considering the first column to be the output of a function,
and the other columns as the input to that function. A set
can be considered as a relationship with only one column.

We now discuss how useful information about relation-
ships and atoms is expressed in Alloy. This includes,
expressing types, constraints, facts, and first-order rela-
tional logic.

Signatures
Signatures consists of a basic type and a set of atoms.

Signatures are declared using the keyword sig. A signature
creates an implied type that can not be referred to explic-
itly. The following statement creates a signature of type
‘Person’:

Signatures may also declare fields. The following state-
ment creates a signature of type Person with two fields
spouse and parents.

The above signature also creates a spouse relationship
mapping each Person to another Person. Notice that the
spouse field may be empty since it is optional. The second
relationship, parents, maps each Person to a set of other
Persons. As it is currently stated, a person may have no par-
ents (when the parents set is empty), or multiple parents
(when the parents set is non-empty). Of course, this
doesn’t make sense, and needs additional restrictions that
limit the set of parents to only two people. This can be
accomplished using facts, which we will discuss facts
shortly.

Given a scalar p in Person, we can dereference p’s
spouse with the expression p.spouse. If p is married, then
spouse will contain another scalar person in Person. Other-
wise, p will contain the empty set. Since Alloy treats sca-
lars and sets identically, you can think of p.spouse as
returning a subset of Person, which may be empty or con-
tain only one person. In a similar fashion, the expression
p.parents will return a subset of Person. However, parents
may be a set of multiple persons.

Sets may also be subdivided into smaller sets. The fol-
lowing statement subdivides the set of all Person into two
subsets: Man, and Woman.

-- first Alloy example
module CeilingsAndFloors
sig Platform {}
sig Man {ceiling, floor: Platform}
fact {all m: Man | some n: Man | Above (n,m)}
fun Above (m, n: Man) {m.floor = n.ceiling}
assert BelowToo
 {all m: Man | some n: Man | Above (m,n)}
run Above for 2
check BelowToo for 2

Figure 1: An example Alloy specification

sig Person{}

sig Person{spouse: option Person, parents: set Person}

part sig Man, Woman extends Person {}

This statement means that there are now two sets called
Man and Woman. Each scalar element in the set Man or
Woman is also an element in Person. Additionally, each ele-
ment in Man and Woman also has the fields that are
included in Person.

As already mentioned, for our model to make sense we
need to add additional restrictions to it. Alloy provides a
means of doing this using facts.

Facts
A fact creates a restriction on relationships that limit the

possible values that they may contain. The Parents signa-
ture adds a number of implicit facts, which we have already
discussed:

Granted, these three implied facts are not very interest-
ing, yet they are important to note. It would make more
sense for our model if we add additional facts, specified
using the fact operator. One fact we might add would be:

This fact states that the spouse of all elements in the
Man set must be in the Woman set and vice versa. The dou-
ble ampersand is a logical operator meaning conjunction
(we will discuss these later). A fact should always evaluate
to true.

Assertions
Assertions are statements that should be true about the

system. They serve as checks to make sure that the system
is behaving correctly. These differ from facts because the
Alloy Analyzer uses these to validate states of the system
rather than restrict the possible states of a system. A well
behaved system should never contradict an assertion and
should behave the same regardless of whether the asser-
tions are present. An example assertion might be:

The assertion above states that all Persons have a non-
empty set of parents. A counter-example for this system
would have at least one person who did not have any par-
ents.

Functions
A function is a reusable formula that can be applied to a

set of typed parameters. In Alloy, convention dictates that
the second parameter acts as a return value. However, mul-
tiple parameters can be used as return values if so desired.
Functions in Alloy are similar to functions in functional
programming languages. However, in Alloy, they are used
to transition from one state to another. The following func-

tion is taken from another example provided with Alloy:

The function above applies to a birthday book example
where a birthday book contains a list of names and birth-
dates. The function BusyDay determines if there are multi-
ple names with a birthday on a given date.

Operators
Many of the operators in Alloy are very closely related

to first-order relational logic. There is generally a direct
mapping from first-order relational logic to the Alloy lan-
guage. We discuss the operators here and present their
ASCII notational equivalents.

There are three categories of operators in Alloy: Stan-
dard logical operators, quantifiers, and set operators. The
logical operators supported include disjunction, conjunc-
tion, negation, implication, and biimplication and are a part
of boolean algebra. Quantifiers that are supported include
universal, and existential among others. These come from
first-order relational logic. Standard set operators such as
union, intersection, difference, and membership are sup-
ported as well. These come from set theory.

Modules
Finally, Alloy uses a simple module system to split

• each scalar in spouse is in Person
• spouse may be empty or have only one element
• parents is a subset of Person

fact { Man.spouse in Woman
 && Woman.spouse in Man }

assert ChildrenHaveParents { all p: Person | p.parents }

Table 1: Alloy Logic Operators

Logic
Operators

Math Symbol ASCII

Disjunction a || b

Conjunction a && b

Negation !a

Implication a => b

Bi-implication a <=> b

Table 2: Alloy Quantifier Operators

Quantifier
Operators

Math Symbol ASCII

Universal all a

Existential some a

Non-existential no a

Table 3: Alloy Set Operators

Set Operators Math Symbol ASCII

Union a + b

Intersection a & b

Difference a - b

Membership a in b

fun BusyDay (bb: BirthdayBook, d: Date){
 some cards: set Name |
 Remind (bb,d,cards) && !sole cards
}

α β∨

α β∧

α¬

α β→

α β↔

α∀

α∃

α∃()¬

α β∪

α β∩

α β–

α β∈

specifications into smaller, more manageable, and reusable
pieces. This allows limited separation of concerns. A speci-
fication may include the text or concepts from other files by
including the appropriate modules. Or, a specification may
be self contained. Module names are used for scope resolu-
tion.

2.2. Tool Functionality

The Alloy Analyzer is a GUI application that has three
main sections. One section is a rudimentary editor for mod-
ifying Alloy specifications. Another section displays
detailed information about any solution (the example or the
counter-example) that the tool finds. The last indicates
information pertaining to the internal data structures used
by the tool during analysis.

The tool provides a means for editing, building, and
testing specifications. First, the tool provides the basic
functions of a specification editor by allowing the user to
load, edit, and save specifications and their modules. While
a specification is loaded, the tool will compile the specifi-
cation and report back to the user certain compile time
errors. In this way, it helps a user to write well-formed
specifications. The tool will then find any commands speci-
fied in the specification and present them to the user for
execution.

The Alloy Analyser will list the commands found in the
specification that will initiate a search. There are two com-
mands: check and run. The check command is used to
instruct the Alloy Analyzer to find a counter-example. It
validates the assertions to make sure that they hold given
the constraints of a system. The run command instructs the
Alloy Analyzer to find an example satisfying all constraints
of the system. Both commands also specify the scope of the
search space by placing an upper bound on the number of
atoms and types of atoms used in the search space. These
commands may be embedded in the specification.

The Alloy Analyzer is also capable of presenting a solu-
tion in a graphical format. The graphical representation
consists of nodes, which represent atoms, and labeled lines,
which represent relationships between those atoms. It is
possible to customize the graph by selecting colors and
shapes for each node and by specifying the color and font
of each label, or even whether that label is included in the
graph. In version 2.1, the Alloy Analyzer integrates the
graph into the main user interface.

2.3. Technical Details

The Alloy Analyzer is available in three different for-
mats. A graphical user interface (GUI) version, written in
Java, is available as a stand alone application that uses
native code for finding solutions. Version 2.0 is available
for most platforms. Version 2.1 is only available as a beta
for the Windows and Max OS X operating systems. The
Alloy Analyzer is also available as a command-line tool
and as an API for use in other tools.

A number of examples are included in the distribution
of Alloy. The examples range from very simple to very

complex. Examples include published systems such as the
FireWire protocol, puzzles such as the Towers of Hanoi,
and systems such as a File System to name a few. We will
discuss the genealogy example and touch on the birthday
example in this paper.

2.4. Examples

The first example we will use for Alloy is a toy model of
genealogical relationships. It was originally written by
Daniel Jackson and is distributed with Alloy. We will now
highlight the important parts of this example.

This declares a set Person, with an optional field spouse,
and a set of parents. The set of all people is split into a Man
and a Woman subsets. It also defines a Man, called Adam,
and a Woman, called Eve. The following facts are declared
about the system:

This fact states that no person is their own parent. The
caret operator means recursively include all parents’ par-
ents. Therefore, this actually says that no person is their

Figure 2: Screenshot of Alloy Analyzer User Interface

sig Person {spouse: option Person, parents: set Person}
part sig Man, Woman extends Person {}
static sig Eve extends Woman {}
static sig Adam extends Man {}

no p: Person | p in p.^parents

own ancestor.

This says that all people except Adam and Eve have a
mother, who is a Woman, and a father, who is a Man, and
that together they make up their parents. Reading this state-
ment, you might assume that it explicitly states that Adam
and Eve do not have parents. However, this is not so, it says
nothing about Adam or Eve.

This fact explicitly states that Adam and Eve have no
parents by stating that the parents set must be empty.

Finally, Adam and Eve are declared to be married. The
next statements have to do with people in general and are
not specialized to Adam and Eve.

The first statement above states that no person is their
own spouse. The second line states that two people are each
other’s spouse. The last line states that the spouse of a Per-
son in the Man set must be in the Woman set and vice versa.

These two statements restrict people from marrying a
sibling or a parent. The first statement claims that one per-
son’s parents and their spouses parents cannot have any
common people. If they did, then the two people would be
siblings. The second statement claims that a person’s
spouse and their parents should not contain the same peo-
ple. Otherwise they would be marrying one of their parents.
The function above states that there should be at least one
person (other than Adam and Eve) that has a spouse.

A command is also included in the specification. The
command, shown below, instructs Alloy to search for an
example that satisfies all the constraints using no more than
seven instances of each type. Runnin Alloy on the follow-
ing command produces the results in Figure 3.

As we can see in the results shown from executing the
the above command, Alloy found a model that satisfies all
constraints using a maximum of seven instances of any
type. We also see that while we have made rules about who
can marry who, we did not make any statements about who
could have children. So, while there is no official incest due
to marriage, in the model there is unofficial insest accord-
ing to lineage. It is also easy to see that the model meets the
constraints of the function. Two other persons, besides
Adam and Eve, are married: Person_6, and Person_3.

We turn to another example specification to see how
Alloy search for counter-examples. In this specification
Alloy models a birthday book. The birthday book keeps
track of a list of people and their birthdays. The following
assertion claims that whenever a name is added to the birth-
day book and then removed, the birthday book should
remain unchanged. .

The above assertion fails. Adding a name to the birthday
book and then removing that name can result in a list of
names that remains altered. The graph of the counter-exam-
ple in Figure 4 shows that the problem occurs when the
birthday book already contains the name that was added. In

Figure 3: Example of Geneology

all p: Person - (Adam + Eve) |
one mother: Woman, father: Man |
p.parents = mother + father

no (Adam + Eve).parents

Adam.spouse = Eve

no p: Person | p.spouse = p
Person$spouse = ~Person$spouse
Man.spouse in Woman && Woman.spouse in Man

no p: Person | some p.spouse.parents & p.parents
no p: Person | some p.spouse & p.parents

fun Show () {
 some p: Person - (Adam + Eve) | some p.spouse
}

run Show for 7

assert DelIsUndo {
 all bb1,bb2,bb3: BirthdayBook, n: Name, d, d': Date|
 AddBirthday (bb1,bb2,n,d) &&
 DelBirthday (bb2,bb3,n)
 => bb1.date = bb3.date
}

such a case, the old name is simply replaced with a new
entry by the same name. When the name is removed, the
new entry is removed, but the old entry by the same name
is not restored. Therefore, this assertion fails in such a case.

Note that the example does not refer to one birthday
book, but rather it refers to three. This is because the func-
tions used in the assertion always return modified copies of
the original birthday books rather than modifying the birth-
day book itself. In this example, bb1 and bb3 should be the
same while bb2 should have the new entry in it.

3. SCR

Software Cost Reduction (SCR) is a technique for
describing the external behavior of a system and how it will
react to these events. SCR was first developed in the mid-
to-late 1970s at the Naval Research Laboratory and the
Naval Weapons Center in order to update the flight pro-
gram for the A-7 aircraft[7]. This project was selected as a
case study because the SCR designers were hoping to dem-
onstrate that the overhead incurred by the process would
not be detrimental to either the time to development or run-
time efficiency of the project[7].

The project leaders in [7] came up with six objectives
that they wanted their technique to be able to achieve:

1. Specify external behavior
2. Specify constraints on the implementation
3. Be easy to change
4. Serve as a reference tool
5. Record forethought about the life cycle

6. Characterize acceptable responses to undesired
events

Over time, the SCR technique has been refined by the
Naval Research Laboratory. Additional revisions to the
flight software of the A-7E aircraft have also been con-
ducted using SCR.[1] As an extension of the original SCR
work, Parnas has introduced the four variable method that
defines variables as monitored, controlled, input, or out-
put.[15] Projects such as SC(R)* and SC(R)3 have been
introduced to promote SCR by general practictioners in
software engineering.[5,Chechik, 1998 #2203]

The distinguishing characteristic of SCR that separates
it from other techniques is that its key concepts may often
be represented in a tabular format. By representing the
requirements as a table, it allows a visual representation
that may be easier for humans to understand and also
allows itself to be analyzed using formal methods.

3.1. Language

There are many conceptual aspects to the SCR lan-
guage. SCR separates these aspects into three main classes:
types, variables, and functions. Each of these play a spe-
cific role in the SCR specification process and will be
described in this section.

Types
A variable is associated with a type property which indi-

cates the legitimate values that it can represent. These types
can be referenced by variables. Types may be enumerations
with their legal values defined. They may also be defined as
integers or floats with a constrained range.

Variables
SCR supports several different classes of variables:

monitored, term, controlled. Each variable is associated
with a type that constrains their range. Furthermore, each
variable may have an initial value specified that will deter-
mine its state when the system is initialized.

Monitored. A monitored variable is used in SCR to indi-
cate that the variable may change in response to environ-
mental conditions and events. These variables are primarily
utilized in mode transition tables.

Term. A term variable is used as a shorthand to reference a
combination of monitored or controlled variables. Term
variables are fully described by their associated condition
function.

Controlled. A controlled variable is utilized in conjunction
with event functions. A controlled variable is adjusted
based upon events that occur in the system. Controlled
variables are described by the relevant event function.

Assertions
Assertions are used in SCR to indicate conditions that

the system should always satisfy. When the system is eval-
uated for correctness, all possible states should have these
assertions satisfied. If they are not satisfied, then the system
is deemed to be inconsistent.

Figure 4: Counterexample of DelIsUndo

Assumptions
SCR’s assumptions are external conditions that are

imposed by the environment. In a sense, these assumptions
are axioms that govern the nature of the system. These
assumptions are always true. If these are violated, then
something in the environment has been altered.

Modeclass
A modeclass defines the possible legal states that a sys-

tem may be in. These modes are used in the events, condi-
tions, and the mode transition tables.

Conditions
A condition is related to a term variable in that it defines

the expression that governs the value of the term variable.
A condition function may either be associated with modes
or be modeless. When a condition function is modal, the
term variable may have its definition altered depending
upon which mode the system is in. When the condition
function is modeless, the term variable will maintain the
same definition regardless of the system state.

These condition functions should be disjoint and cov-
ered. This means that all possible values of the term vari-
able are defined and there is no overlap in the values based
upon the expression. We will discuss the exact meaning of
disjointness and coverage in relationship to SCRtool later
in this section.

Table 4shows an example of a condition function table.
The modes are located in the first column, with the condi-
tions comprising the rest of the columns in the table. If the
condition function is modeless, then only one row is
present. Otherwise, if the condition functional is modal,
there will be a row for each mode that the system can enter.
The bottom row contains the term variable name that is
controlled by this function in the first column of this last
row, and the subsequent columns in the last row enumer-
ates all potential values of this variable according to its
type.

Events
An event function describes how changes in the system

affect controlled variables. The structure of the event func-
tion table is similar to the condition table (see above).
However, instead of having expressions that govern the
change of the variables, the values are changed when a
monitored variable changes value.

Mode Transition Table
A mode transition table describes how a system

responds to events by modifying its internal state in
response to changes in monitored variables. Each row in
the table describes one atomic transition between system

states. An example of a mode transition table is provided in
Table 5, which is further explained in Section 3.4 along
with its relevant background information to place it in its
appropriate context.

Mode transition tables are linked to a single modeclass
which enumerates the possible legal states that the system
may be in at any particular time. According to the SCR
semantics, a system may only be in exactly one mode from
a modeclass at a time. Therefore, it is not possible for a sys-
tem to be in two modes in the same modeclass at the same
time. Nor can the system not be in one of the listed modes
as it must be in some determined state. Each mode transi-
tion table has a defined initial state that determines what its
state will be when the system is brought up.

For each row in a mode transition table, the first column
indicates which mode the system must be in before the par-
ticular transition can be activated. The last column indi-
cates what the resulting mode of the state will be. The
intermediate columns depict the input to the mode transi-
tion table - listing either the dependencies that must be sat-
isfied or the event that must occur to satisfy this transition.

These intermediate columns may either be a precondi-
tion to the transition, or be the event that triggers the event.
A precondition is denoted by a truth value that represents
an expression. If a particular cell is false (denoted by the
lowercase letter f), then it means that the expression in that
column must be false before the transition can occur. Like-
wise, if the cell value is true (denoted by the lowercase let-
ter t), then the expression must be true before the condition
is true.

However, if the value in the cell is @T or @F, it means
that this row is evaluated when that expression becomes
either true or false. If the cell value is @T, this means that
the transition will only fire when in the previous state the
expression was false, then in the current state, the expres-
sion is now true. If an expression does not change relative
to its prior state, then any @-expressions are not evaluated.

While a transition may have multiple preconditions, it
may only have one event that causes the condition to be
triggered. If all of the preconditions are met and the cell
value changes to the specified @T or @F, then that row is
then evaluated and the mode is adjusted accordingly to the
last column in that row.

3.2. Technical Details

The package that was evaluated was SCRtool and SCR-
simulator from Naval Research Laboratories. It is currently
at version 2.1.0 in targeted beta releases. SCRtool is an
extension and rewrite of the older SCR* toolset that builds
upon the experiences of the prior version.[5]

The implementation of SCRtool is primarily Java-based
allowing for maximum portability. However, the SCR
testtool backend is written in C++ and requires native bina-
ries. Consequently, only Windows and Mac OS X binaries
are distributed by the NRL. SCRtool may also take advan-
tage of SPIN if it is available, but SPIN is distributed sepa-
rately from SCRtool and SCRsimulator.

Table 4: Condition Function Example

Modes Conditions

-
Cond1 = True AND

Cond2 = False
Cond1 = False AND

Cond2 = True

Ready = TRUE FALSE

The package is split up into two programs: SCRtool and
SCRsimulator. SCRtool is responsible for editing the spec-
ification and performing basic validation of the specifica-
tion. SCRsimulator can model a specification created in
SCRtool and visualize it in a manner which may make it
easy for people to interact with the proposed model.

3.3. Tool Functionality

Most of the functionality of the toolset resides in SCR-
tool. Keeping with the tradition in SCR in relying upon
tables, SCRtool’s main user paradigm is the tabular user
interface. Since most SCR practictioners are already
assumed to be comfortable with tables, it relies heavily on
this motif in order to convey key concepts to the user.

Syntax Tree
As depicted in Figure 5, the syntax tree is the principal

user interface in SCRtool. The syntax tree visually sepa-
rates the specification into dictionaries and functions. The
dictionaries are further sub-divided by primary classifica-
tion (type, variable, assertion, etc.). The dictionaries and
how they are incorporated into SCRtool are examined in a
later section.

Each entry in the syntax tree displays its name. If the
entry is related to a table or dictionary, a link to the appro-
priate table window is included. Additionally, a link to the
dependency graph is available that includes that node. If an
error is currently associated with the entry, the name will
appear in red. An explanation of the error will then be
present underneath the name. If a counterexample is found
that disproves the claim, the state will be detailed along
with this description.

Dictionaries
As shown in Figure 6, the interface for adding or modi-

fying variables to an SCR specification via SCRtool is via
the dictionary interface. Through this interface, all moni-
tored, term, and controlled variables are displayed together.
By utilizing the search functionality, specific variable
names may be looked up. Each variable receives its own
row in the dictionary, which details the name, class, and
type of the variable.

The user may also indicate what the initial value and
expected accuracy of this variable will be. If the variable is
a term or controlled variable, the dictionary links with the
associated function that governs the variable. The user may
also specify in a free-form textual format how the value
should be interepreted by the system. This may be benefi-
cial in annotating the variable with its meaning and other
notes that may assist collaborators in understanding.

Function tables
SCRtool allows you to define functions utilizing the

table paradigm prevalent in SCR. However, there are some
subtle differences between the common SCR representa-
tion of these tables and how SCRtool uses them.

A shorthand notation used in SCRtool for the mode
transitions represented in a single row is to use the WHEN

keyword. Rather than represent the mode transitions as a
table with columns for each possible expression used in
that table, SCRtool utilizes an expression to summarize
each of the intermediary columns.

For example, the following row in Table 5:

would be represented as:

This format used by SCRtool trades off expressiveness

Figure 5: Syntax Tree in SCRtool

Figure 6: Dictionary in SCRtool

Ignited Running TooFast Brake Activate Deactivate Resume
New
Mode

Inactive t t - f @T - - Cruise

@T(Activate) WHEN
(Ignited AND Running AND NOT Brake)

for the rigid format of the table. Using the straight tabular
format of SCR, it is not possible to directly create compli-
cated expressions for use in a mode transition table. To
solve this problem, term and controlled variables can be
used to indirectly refer to the expression. However, with
SCRtool, these term and controlled variables are not
required as they can be directly expanded into the mode
transition table expression.

Dependency Graph
One of the features that SCRtool provides is displaying

a dependency graph of all of the elements within the speci-
fication. The graph shows the relationship between the ele-
ments. For example, it visually indicates the types that
specific variables are derived from. It also depicts what
variables are used by the function. This allows a perspec-
tive of where an element fits into the overall specification.
Therefore, if a change is required, it is possible to visually
recognize what the effects of this change may be.

Automated Checking
SCRtool can perform syntax, disjointness, and coverage

checks on the current specification. These inform the user
about any current inconsistencies in the specification as it is
being edited, so that the user can resolve them immediately.
Initially, these checks are displayed on the toolbar in SCR-
tool with a question mark to represent that the status of
these tests are unknown. Then, the checks can be executed
by hitting the appropriate button. If the test is successful, it
will replace the question mark with a green checkmark;
otherwise, it will be replaced with a red X to indicate fail-
ure.

Syntax and Type Checking
The syntax checker will ensure that the specification sat-

isfies the language requirements at a basic level. For exam-
ple, the syntax checker will ensure that no two variables
share the same name or that no illegal characters are used
in the variable name. The syntax checking is performed by
the Java front-end in real-time. Therefore, as the specifica-
tion is being edited, the user is being informed as to
whether the current specification passes the basic syntax
checks or not.

SCRtool may also verify that all instances of variables
are used correctly. If a variable is potentially assigned a
value that is illegal for its type, an error is emitted. Verifica-
tion that the correct variable type is used is also present.
For example, this means that in a condition function, only
term variables are allowed or that a controlled variable is
only used in an event function. When variables are used in
expressions in a function or another variable, it ensures that
only legal comparisons between equivalent types occur.

Disjointness
The disjointness checker verifies that for all term and

controlled variables there are no values in common that
would lead to an undetermined state. For example, in Table
4, which lists a condition function for a term variable, the
values of Ready can not overlap. If Cond1 is true and

Cond2 is false, then Ready is true. Then, if Cond1 is false
and Cond2 is true, then Ready is false.

This means that there is not an ambiguity about what the
value of Ready will be based upon the values of Cond1 and
Cond2. If an ambiguity were to arise where there was over-
lap between the TRUE and FALSE state, then this may lead
to non-deterministic behavior by the system.

However, if the ANDs were changed to an OR in Table
4, then it would fail the disjointness checks. This would
mean an inconsistency would arise if Cond1 were True and
Cond2 were True. Ready would satisfy both of these condi-
tions. Therefore, it is not possible to deterministically
decide what the value of Ready should be in this situation.

In order to perform the disjointness checker, all of the
basic syntax tests must first pass successfully. Otherwise,
the disjointness tests can not be executed. The disjointness
checks are conducted by the testtool C++ backend, not by
the Java front-end. This means that the tests must be explic-
itly executed by the user in order to obtain the results.

Coverage
The coverage checks are similar to the disjointness in

the interface that SCRtool utilizes. The coverage checker is
meant to identify any term and controlled variables that do
not have a value for a particular state. This could lead to
instances when a value is in unknown state. This is slightly
different from disjointness in that no value can be derived,
but with disjointness, multiple values are legitimate in a
particular state.

While it may appear that a condition or event function

Figure 7: Mode Transition in SCRtool

may not have complete coverage by looking at the table, it
is possible to use assumptions about the environment in
order to restrict the range of these functions in order to
maintain coverage. Therefore, the SCRtool coverage
checker must account for the assumptions in order to accu-
rately perform the coverage checks.

In order to understand coverage, we can examine Table
4 again to see if it is covered. In the example, the case with
Cond1 and Cond2 are both true or both false is not detailed,
so the value of Ready would be unknown. However, if
additional assumptions constrain Cond1 and Cond2 to
being mutually exclusive, then this function would be cov-
ered in this system.

If additional assumptions were not imposed to make the
formulas in Table 4 covered, then the events or conditions
would have to be altered to ensure that the case when both
values are true or both values are false is determined by this
function. If they are not covered, then it would be possible
for the system to enter an undetermined state.

Prover
SCRtool also includes a prover to check assertions in a

specification. Assertions differ from assumptions in that
they are desired to be true, but they are not intrinsically
true. Assumptions do not need to be proven explicitly,
because they represent an inherent facet of the environment
that is not mutable. Therefore, to raise the confidence in a
specification and its system, the user may prove that the
assertions are valid for all legal states in the system.

Each assertion that is desired to be proven must be
explicitly enabled. There are multiple states that each asser-
tion is allowed to be in using SCRtool. First, the assertion
may be enabled or disabled. If an assertion is disabled, it
will be ignored by all components within SCRtool. If it is
enabled, it will be verified in external checkers, such as
SPIN, and SCRsimulator.

Additionally, there is a Prove enable/disable button.
When the assertion is enabled for proving, the prover
within SCRtool will attempt to validate the assertion when
the prove checks are requested. If the assertion is proved
false by the static prover within SCRtool, the sequence of
events that fails the assertion will be displayed to the user.

In order to optimize the static prover over a large speci-
fication, the user may specify that a statement has already
been proved by leaving the prove state disabled. SCRtool
will then not seek to prove the variable when the prover is
executed, but will assume that it has been previously
proven. This will reduce the computation cost of proving
and allow for incremental development of the specification
since it does not have to recompute costly assertions upon
each static prover invocation.

Verification with SPIN
SCRtool allows for the specification to be explored with

the SPIN model checker[8]. Currently, SPIN is distributed
independently of SCRtool, so the user is required to install
it in addition to SCRtool. Once SPIN is installed, SCRtool
can translate the current SCR specification as modeled into

SPIN’s corresponding lanaguage PROMELA. Then, SPIN
will examine the specification over a certain range to see if
any of the assertions have been violated. If errors are
found, an error trail is produced and can be displayed
within the SCRtool interface.

SCRtool’s integration with SPIN allows for the user to
control the parameters to SPIN via the SCRtool interface.
The user can modify the maximum search depth, the state
space size, and maximum memory usage that the checker
will not exceed. Through this interface, the user can also
control how SPIN will search the state space - exhaustive,
supertrace, or hash-compact. Each of these options is fur-
ther documented in SPIN’s documenation and tutori-
als[16].

Simulations
Once a specification is created, it is possible to create an

executable specification that then can be fed into SCRsimu-
lator. Figure 8 shows a screenshot of SCRsimulator. These
simulations are not meant to be exhaustive nor proof that
the system is verifiably correct. Instead, SCRsimulator is
meant to provide a high-level mockup of the system that
potential users can interact with in order to obtain a feel for
how the system will behave if it is based on the current
state of the specification.

The usage of this simulator allows for rapid prototyping
during the specification development process. As the speci-
fication is being written, the current model view can be pre-
sented to potential users or system experts via
SCRsimulator to obtain their feedback as to whether the
system is proceeding in the correct direction. However, this
is an informal process and does not guarantee that the spec-
ification is correct using formal methods.

SCRsimulator allows the users the ability to alter the
monitored variables while the system is running. This
allows inspection as to how changes in the monitored vari-
ables will affect the current mode, as well as the term and
controlled variables of the system. SCRsimulator also cre-
ates a log of all of the interactions. This logfile allows the
events to be later replayed by other users, or for the current
user to rewind the simulation to a previous state.

As errors arise during the simulation, SCRsimulator will
emit warnings about failed assertions or logical errors that
have been violated. This allows the specification creators to
correct the specification based upon usage of the system. It
may be possible that assumptions could be violated during
the simulation. If the system should handle this situation
that currently violates the assumption, then the specifica-
tion can be altered in order to widen the scope of the
assumptions accordingly.

3.4. Examples

In [2], a system modeling a cruise control system of an
automobile was introduced. Table 5 summarizes the speci-
fication using a SCR mode transition table. This system has
been partially adopted as a standard challenge problem in
the SCR domain. For this example, an independent Java-
based implementation of this behavioral specification is

freely available on the Internet[3]. This particular imple-
mentation is focused on automatically generating tests
from SCR-style formal specifications.

Since SCR specifications are necessarily derived from
the underlying environment, in order to understand this
example, we need to be informed about the nature of an
automotive cruise control system. This is a crucial compo-
nent to any SCR usage - requirements in SCR may only be
valid within a certain environmental context.

An automotive cruise control system allows the driver to
set a speed that the car will attempt to maintain until it is
overriden by the driver. The driver may choose to override
the cruise control by either disabling the cruise control
explicitly, pressing the gas pedal to accelerate the car tem-
porarily, or engaging the brake pedal and suspending the
cruise control until the driver reactivates the cruise control
functionality.

In Atlee’s example, the cruise control system is modeled
by several components in the car: the ignition, an engine
on/off button, the speedometer, the gas pedal, the brake,
and the cruise control button. This cruise control button has
three states: off, cruise, and resume. The cruise control sys-
tem may also be in four different states: off, inactive,
cruise, and override.

4. Alloy Observations

We made the following observations about Alloy as we
used the tool. It can definately play a positive role in ana-
lyzing system designs. However, we found that there are
some issues of caution that must be addressed when using
the tool.

4.1. Appropriateness: Who, When, and How

The Alloy langauge is very expressive. However, the
cost of its expressiveness is that it also requires a high
degree of knowledge to use effectively. Interpreting and
writing a correct specification is error prone simply

because it requires translation of a cognative concept to and
from a formal statement. The required knowledge and the
effort in writing and interpreting specification makes the
initial cost of specifying a system in the Alloy language
high.

The benefits, however, of this investment are potentially
two-fold. The first benefit is that the system will likely be
less error prone since Alloy will undoubtedly find errors
that were initially overlooked. This will translate into fewer
maintenance costs later on in a product’s lifecycle.

The second cost beneifit is that an abstract model of the
system now exists that will be invaluable when evolving
the system beyond its initial specification. This will help
make modifications more stable since Alloy can check the
new modifications against the original specfication for
compatibility.

This translates into a high upfront cost for the initial
specification of a system. And a lower cost when modify-
ing a system. This suggests that Alloy would be best suited
for systems where maintenance costs are significant and
where evolvability is important. It also suggests that Alloy
is a poor choice for a system with a short lifetime or a
where evolvability is not important.

4.2. Scalars, Tuples, and Sets

The fact that Alloy does not differentiate between sca-
lars (an atom), tuples (an ordered set of atoms), and sets of
tuples (a relationship) makes the language much simpler.
The choice here to treat these three types similarly works
because Alloy is not a programming langauge. As a specifi-
cation language, the differences between these three types
is insignificant. Ignoring them allows a specifier to focus
on just the core of what they are trying to say without hav-
ing to worry about all of the syntax involved to make the
types match. This also reduces the clutter of the resulting
specification, possibly making it easier to comprehend.

4.3. Refutation vs. Proof

Ideally, we would like to prove correctness of every
design and program, however, this is not practical. Instead
of proofs, Alloy finds counter-examples which refute the
correctness of a specification. When finding counter-exam-
ples, the state space is limited in scope and the failure to
find a counter-example does not mean that there is no error
in the system.

On the other hand a counter-example can usually be
found very quickly and can be applied towards systems that
are not deterministic. The important question to ask is
whether a counter-example with its uncertainty is valuable.
According to [9], the compromise is worthwhile. Our expe-
rience with the tool confirms this. We found that the
counter examples provided useful information about flaws
in a specification. Additionally, the counter-examples typi-
cally had enough information for us to determine what was
wrong with the system quickly.

Figure 8: Screenshot of SCRsimulator

4.4. Graphical Visualization

The graphical visualization of examples and counter-
examples is useful at times, but confusing at other times.
The graphs can become so cluttered that it is difficult to
identify the relationships among the objects. The fact that
the look of the graph can be customized helps address this.
However, what is really needed is the ability to move
graphical components around on the canvas so that they
make more sense to the user of the tool.

5. SCR Observations

The following are some observations that we have made
by evaluation of the tools and processes that are associated
with SCR. SCRtool can definitely help with the automation
and management of the requirements process, but there are
several concerns that present an obstacle for seeing
widepsread adoption in the software engineering commu-
nity of the SCRtool set and techniques.[4] If these concerns
are addressed, then it may be possible to promote the adop-
tion on a wider scale than is currently seen.

5.1. Helps automation

By having tools available to help practicitioners of SCR,
it makes it easier to manage the evolution of the system and
its associated requirements. Without having automated
tools available, managing requirements in a tabular format
may become quite cumbersome. As one dependency or
expression changes, it requires that all of the dependencies
be reexamined. This process does not lend itself well
towards a manual process.

In addition to the managing the dependencies with an
automated tool, it can also assist in the verification and
consistency checking. Manual verification has proven not
to be as effective as automated checking of SCR require-
ments.[6] Therefore, the SCRtool set addresses this con-

cern by offering a lot of automated checkers that have been
previously covered in Section 3. Relying upon the auto-
mated checking will improve the overall process in com-
parison to using manual checking.

5.2. Lack of available resources

An issue that faces someone wanting to learn SCR is
that there is a dearth of community and public resources
around SCR. Currently, it is impossible to obtain the SCR-
tool or SCRsimulator code without having contatcs within
the SCR community. Therefore, there is not a chance for a
public community to be developed around the SCR toolset.

While there are a lot of academic papers available on
SCR, they have evidenced the evolution of SCR as it has
changed within NRL based on their own experiences using
the technique. The SCR described by [7] is indeed subtly
different than a contemporary description of SCR as in [6].
Therefore, reading the older papers on SCR does not reflect
the current state of the art in using the associated tech-
niques. This presents a serious challenge in understanding
what should be done when adopting SCR.

A creation of a public website that describes SCR and
acts as a hub of information to the current wealth of knowl-
edge around SCR would be extremely benefical for people
who want to learn about SCR. A good website would pro-
vide clear examples and well-defined terminology that can
aid understanding of the SCR processes.

Additionally, it would also be beneficial if the SCRtool
set were distributed publically in an open manner. This
would allow people outside the current SCR community to
use the toolset, and contribute to the enhancement and fixes
of the tools. This would greatly increase the exposure of the
tool and the technique, and would hopefully have the addi-
tional benefit of allowing the tools to be developed in a col-
laborative and decentralized fashion where the toolset lives
up to its expectations.

Table 5: Cruise Control ModeClass Transition Table

Current Mode Ignited Running TooFast Brake Activate Deactivate Resume New Mode

Off @T - - - - - - Inactive

Inactive
@F - - - - - - Off

t t - f @T - - Cruise

Cruise

@F - - - - - - Off

t @F - - - - -
Inactive

t - @T - - - -

t t f @T - - -
Override

t t f - - @T -

Override

@F - - - - - - Off

t @F - - - - - Inactive

t t - f @T - -
Cruise

t t - f - - @T

Initial Mode: Off

5.3. Difference in syntax between tools

Another concern is that there is no universally agreed
syntax for SCR. For example, [2] uses a slightly different
semantic for some of the mode transition tables than would
be utilized by the SCRtool from NRL. This difference
makes it difficult to compare instances of SCR require-
ments created by different tools as each one has a slightly
different interpretation of what belongs in the specification.

This issue could be partially resolved by creating a uni-
fied format that formally describes the SCR language and
techniques. Until now, there have only been partial descrip-
tions of the SCR language and semantics. [6] provides an
overview of the techniques currently used in SCR, but does
not provide a formal definition. Therefore, the creation of a
complete reference guide that explains all of the concepts
would be of tremendous benefit to potential adopters.

5.4. Tool interface is shaky

When using SCRtool, the user interface displays some
flaws that impairs the usability of the tool. For example, in
the version that was evaluated, it is not possible to delete
rows from a table. While it is possible to modify the con-
tents of the row or to add a row to the table, a row can not
be deleted using the graphical interface. The only solution
that has been found at this point is to hand-edit the SCRtool
specification file to remove the offending row and reload
the specification. While this is only one relatively minor
problem, it is indicative of the current quality of the inter-
face.

Additionally, SCRtool requires adhering to their instal-
lation configuration in order to work. If the user tries to
install SCRtool in a different directory than the one recom-
mended by the NRL, it will require customization by the
user that may only be able to be performed by expert users.

These interface and installation difficulties present a
challenge to users who are trying to learn SCR via SCR-
tool. They may experience extreme frustration at learning
the tool and the techniques due to the lack of polish in the
current tool. For someone who is already familiar with the
SCR techniques, they may be willing to look beyond the
tool interface deficiencies since they are trying to perform
tasks they may already know how to do manually or with
another tool. But, for people who are new to SCR, they
may be more reliant upon the tool interface to assist them
in their requirements and specification gathering. If the tool
does not assist them appropriately, they may become frus-
trated with the SCR technique and avoid it in the future.

5.5. Narrow scope

A fundamental concern with SCR is that it is extremely
focused upon a particular activity. A single mode transition
table will only represent one selected part of the overall
system. This may make it difficult to obtain a coherent per-
spective of the overall system from just one table. However,
this deficiency is balanced by the fact that inspecting one
table provides a clear picture of that specific area.

This tradeoff is further complicated by the fact that SCR
does not directly support the concept of abstractions. For
example, it is not possible using SCRtool to build up a
specification that combines mulitple modeclasses. Each
modeclass must remain independent from the other mode-
class in the specification. If layering and composition of
modeclasses were allowed, it might make the task of creat-
ing large-scale specifications in SCR a more appealing
solution.

6. Comparison between Alloy and SCR

We now compare these tool with respect to what sets
them apart form each other. We found ten points of interest
when comparing the tool outlined in Table 6. We now dis-
cuss each point in detail.

6.1. Objectives

Alloy searches for a model or state that satisfies the con-
straints of a system. Alloy supports the use of complex data
structures using sets and relations. This allows one to
describe states directly since the data structures can
describe expected data values for the state which are closer
to actual values of the desired system. It also allows state
transitions to be described declaratively meaning that a
state transition is described in more detail than simply a set
of assignment values for variables.

SCR is a technique for describing the external behavior
of a system and how it reacts to these events. Rather than
defining the internal state of the system components, SCR
will only capture the externally visible properties of the
system. SCR relies upon a paradigm of tables to convey the
meaning of the specification instead of using a language
construct. This combination of externally visible properties
and tabular format allows a separation of concerns in that it
does not overspecify the system - a point of concern for
many formal methods.[18]

6.2. Lifecycle Stage

While these tools may be used at other stages of the life
cycle, we feel that there is a stage where these tools are
most effective. Alloy fits somewhere inbetween the design
and implementation. SCR works better in the early stages
of a software’s lifecycle.

Alloy works best after the design stage and before
implementation because it can be best used as a formal
method to analyze the design. The language Alloy uses to
specify a system of constraints is very close to code but
could be used at a higher level of abstraction than the
implementation code itself. It is possible to use Alloy at
earlier stages simply because it is so expressive, however, it
seems most appropriate to use as a tool to iteratively ana-
lyze a system’s design, find counter-examples, then correct
the design and Alloy specification accordingly.

SCR works better as a tool to help organize, analyze,
and find missing requirements. SCR often represents key
concepts in tabular format, which makes it immediately

apparent which variables are not accounted for in certain
mode transitions. This type of organization, in and of itself,
is useful as a means of determining what issues may
remain overlooked. Because SCR describes external
behavior of a system, the insights gained into a system
using SCR may not translate as readily to the design or
implementation of that system since a design deals with
both external and internal representations of that system
and the implementation is internal.

6.3. Approach

Alloy accomplishes its objectives by analyzing a model
describing the properties of each state of a system as well
as the properties of each state transition. During analysis, it
creates concrete instances of each different types of vari-
ables in a system and uses them to construct a finite state
space model.

SCR focuses more on the properties of mode transitions
and the types of classes involved in the system. SCR deter-
mines how each abstract class will affect the mode of the
system, and whether the specification covers all possible
modes and interactions.

6.4. Visibility

By visibility, we refer to how well one can read, write,
correlate understanding of a specification written using one
of these approaches. A high degree of visibility allows
someone to easily see how different factors of the system
interact to produce the results that the tools demonstrate. A
low degree of visibility would prevent someone from gain-
ing this valuable insight. Both tools address this issue.

Alloy partially addresses visibility using modules. A
module may split a specification into smaller fragments
and provides a qualified name that uniquely identifies the
elements of that fragment. However, there is no abstraction
between modules and all entities in them are considered

public in that there is no information hiding. This could
easily lead to a specification that has information scattered
across multiple modules. While a carefully designed speci-
fication could avoid this, Alloy does not enforce this.

SCR suffers from similar visibility problems in that
everything is public and the degree to which a specification
is truly modular is left to the user to decide. One could con-
ceivably specify an entire system in one large table. It may
be more difficult to split a specification into interrelated
tables. A benefit of SCR over Alloy is that by looking at a
column in a table, it is easier to see how a variable affects
different mode transitions. The tabular layout makes the
relation between any variable and mode clear and easy to
read, which can be very useful when trying to determine
how a particular variable affects the system. The fact that
all variables affecting a mode are co-located on a table also
helps in relating variables to each other. Alloy doesn’t have
any concept such as this that highlights relationships
between different aspects of the system.

6.5. Language

Alloy uses a language that is very close to code. It is
therefore very powerful in expressing different concepts
and may correlate well to both the design and implementa-
tion artifacts. Statements in Alloy consist of boolean alge-
bra, set theory, quantifiers, and first-order relational logic.
Consequently, it may be difficult to write or interpret Alloy
specifications due to the inherent complexities of these
mathematical languages. Certain expressions can be very
complex and may need comments to help a user of the
specification understand it.

It’s clear that Alloy requires someone with a technical
background to write and interpret specifications. They must
be competent in the areas of mathematics that Alloy uses.
While this makes the language more expressible, it limits
the number of people that can make use of the tool without
prior knowledge. This is a natural trade-off and is probably

Table 6: Alloy & SCR Feature Comparison

Feature Alloy SCR

Objectives verifying constraints behavioral specifications

Life Cycle Stage after design before implementation after requirements and before design

Approach
state properties & transitions

concrete instances
mode transitions
abstract classes

Visibility defined by modules derived from tables and cells

Language
very close to a programming language using

mathematical expressions
table driven

boolean expressions in SCRTool

Reuse promotes reuse via modules does not facilitate reuse

Assertions span multiple states verify current state

Results
examples satisfying constraints

counter-examples violating assertions
no proofs

limited counter-examples of violations
proof that system will always be valid

Coverage no coverage coverage

History complete system information displayed relevant system information displayed

appropriate for the stage in which Alloy is best used, that is
after design and before implementation.

SCR uses a tabular format that allows a user to think in
terms of two things at a time. Each cell represents a vari-
able and a mode transition. Since it is generally easier to
think about a small set of things at one time than try to jug-
gle a large collection of things, SCR naturally helps a spec-
ification to be simpler by taking the tabular approach. In
SCR a cell may have one of only five values: t (already
true), f (already false), @T (became true), @F (became
false), and ‘-’ (currently irrelevant) indicating the relation-
ship of that variable to the mode transition. This makes
relating a variable to mode much easier and comprehensi-
ble. SCRtool additionally allows a cell to have boolean
expressions, enhancing the expressability of the tool. There
is also an SCR specific vocabulary that must be learned.

Because SCR is best applied early on in the life cycle,
the limitations in expressability are appropriate. A person
with little mathematical background could more easily
learn how to interpret an SCR table than a complex Alloy
expression. It is possible that a customer might fit this
description and that they would be interested in viewing an
SCR table.

Both tools support the concept of facts about a system
(that is statements that are always true) and assertions
about a system (that is statements that verify the integrity
of the system). Alloy refers to these as ‘facts’ and ‘asser-
tions’, while SCR refers to them as ‘assumptions’ and
‘assertions’.

6.6. Reuse

Modules in Alloy provide a limited mechanism for
reuse. However, Alloy does not provide a mechanism for
hiding information in a module to make it more partitioned.
All entities in the module are considered public. This
makes it difficult for a module to be tweaked and applied to
a different system since other modules may depend on
something that was changed.

SCR’s reuse is more limited. It is possible that a table
that defines the relationship between modes and variables
for a very specific component may be reusable. However,
reusing a table in a different specification would require
that the environments for that table be very similar since
SCR’s focus is on interation with the environment and the
tables are therefore tied to the environment of the sytem.

6.7. Assertions

Both tools provide a means of stating assertions. Alloy,
however, allows assertions to span multiple states. An
assertion in Alloy can check that a condition would still
hold after future state transitions have occurred. This can
be seen in the example of a counter-example in section 2.4.
In this example, the assertion executes other functions on
the current state and determines what the state will be in
the future. This is very useful, because it allows assertions
to be more expressive

Assertions in SCR are limited to the current (and possi-

bly the previous) mode. Assertions can only be used to
make a claim about whether the current mode is valid or
not. This may make it difficult to express an assertion that
would better be expressed by referring to values of vari-
ables as they would be in future or past modes.

6.8. Output

Alloy produces as output examples showing models that
satisfy constraints, and counter-examples showing models
that violate assertions. As such Alloy can only refute, but
not verify that a system is designed properly. This has both
advantages and disadvantages. This is advantageous
because it allows checking of systems that may not be
deterministic. In such a system, it is still useful to deter-
mine where the system fails. This can be disadvantageous
because it requires a search through a state space. Choosing
the right size of the state space is not automatable [9].
While finding no errors in a small state space does not
prove the correctness of a program, practice has shown that
most errors will be found in a relatively small state space.
So, despite the fact that Alloy cannot prove total correct-
ness, it is still a very useful tool.

SCR on the other hand can prove that according to the
specification no illegal states will be reached. It does this as
part of the process of entering the specification. While
entering the specification, SCR analyzes it and highlights
problematic issues. SCR does a proof in the sense that if
there is an error in the specification, SCR will find it. SCR
won’t identify a problem if something is left out of the
requirements all together. However, it will identify areas
where an included variable is inconsistently addressed
within the specification.

6.9. Coverage

Alloy does not prove a system to be consistent, it only
refutes the claim. When Alloy fails to find a counter-exam-
ple within a given scope, it cannot be assumed that Alloy
will not be able to find a counter-example in a larger scope.
In practice this is not really a problem because an error in
the system can generally be found in a smaller scope. Addi-
tionally, Alloy is applicable to systems that are not provable
because they are themselves undecidable. Refuting the cor-
rectness of such a system is very useful in those cases.

Since SCR focuses on the transitions between modes, it
can cover all transitions completely. Instead of analyzing
all of the possible states that can be reached in the specifi-
cation, SCR will analyze all of the potential state transi-
tions for correctness. This allows specifications that have
loops to be analyzed deterministically and in finite time.
This is a crucial benefit to ensuring that the specification
does satisfy all of the given constraints for all possible
cases.

6.10. History

Errors identified by Alloy always contain the complete
system information. They show each variable involved in
the error. SCR, however, does not typically show this infor-

mation. It is possible to use the underlying SAT, SPIN, to
produce a complete description of how the error was found
by viewing its error trails. However, this information is not
currently well-integrated into SCRtool and may present
challenges to understanding what the tool is exactly provid-
ing with these error trails.

7. Discussion

We have examined the functionality offered by Alloy
and SCR in order to provide a picture of what these tools
can achieve in the arena of formal methods. Furthermore,
we have conducted a comparison between SCR and Alloy
to understand where each tool belongs in the software
development process. We have concluded that SCR is typi-
cally better suited to be utilized at an earlier stage of the
software lifecycle than Alloy should be.

This disparate role in the software lifecycle may mean
that Alloy and SCR can be viewed as complementary tools
instead of directly competing tools. Therefore, rather than
being forced to choose between the tools, an intelligent
user may be able to use the tools together to achieve a
clearer picture of how the system will behave.

Certain aspects of Alloy are better suited for some sorts
of systems than SCR, and vice versa. Alloy is more
expressible than SCR in that a wider variety of concepts
can be captured in the specification language. Alloy also
offers the ability to provide clear counter-examples that
violate the assertions, while SCR focuses on displaying
only the local constraint that has been violated.

SCR allows for higher confidence in the fact that the
specification can not be violated given that model. Alloy
can not definitively prove that a specification has no contra-
dictions or that it might contradict itself. The use of SCR-
simulator allows an interactive experience with the
specification which broadens the accessibility of the speci-
fication in its current format. Alloy, however, is geared
more towards programmers in that its constructs require a
solid mathematical background.

However, we feel that a more precise evaluation could
be conducted by attempting to create a mapping between
these languages. If the concepts of one tool can be fully
expressed in the other, then we know that the second tool is
just as expressive as the first one. If the reverse mapping
can also be achieved, i.e. from the second tool to the first
tool as well, then that would show to believe that these
tools are able to represent equivalent concepts.

Currently, there is no mapping from either Alloy to SCR
or SCR to Alloy. However, SCRtool currently includes a
mapping from SCR to SPIN’s PROMELA. If this mapping
could be modified in an automated fashion to generate
Alloy-specific constructs, then the first half of our above
hypothesis would hold true. We believe that this would
likely be possible to achieve based upon the semantic simi-
larity between PROMELA and Alloy.

However, even if the mapping from SCR to Alloy could
be achieved, this is not enough to prove that they are equiv-
alent. It is our current belief that there are significant chal-

lenges to creating a mapping from Alloy to SCR. These
include the challenge of capturing state semantics in SCR
and that Alloy may fundamentally be more expressible than
SCR. By definitively either proving or disproving that such
a mapping can exist will provide us an even better compar-
ison between these tools than presented here.

8. References

[1] Alspaugh, T.A., Faulk, S.R., Britton, K.H., Parker,
R.A., Parnas, D.L., and Shore, J.E. Software Requirements
for the A-7E Aircraft. Naval Research Laboratory, NRL
Memorandum Report 3876, August, 1992.

[2] Atlee, J.M. and Buckley, M.A. A Logic-Model
Semantics for SCR Software Requirements. In Proceed-
ings of the 1996 International Symposium on Software
Testing and Analysis. p. 280-292, San Diego, California,
1996.

[3] Black, P.E. Cruise Control Example. National
Institute of Standards and Technology, 1998. <http://
hissa.nist.gov/~black/FTG/CCsim/corvette.html>.

[4] Chechik, M. SC(R)3 - Towards Usability of For-
mal Methods. In Proceedings of the CASCON '98. Novem-
ber, 1998.

[5] Heitmeyer, C.L., Kirby, J., Labaw, B., and
Bharadwaj, R. SCR*: A Toolset for Specifying and Ana-
lyzing Software Requirements. In Proceedings of the Com-
puter-Aided Verification, 10th Annual Conference
(CAV'98). Vancouver, Canada, 1998. <http://
chacs.nrl.navy.mil/publications/CHACS/1998/
1998heitmeyer-CAV98.pdf>.

[6] Heitmeyer, C.L. Software Cost Reduction. In
Encyclopedia of Software Engineering, Marciniak, J.J. ed.,
2002.

[7] Heninger, K.L. Specifying Software Require-
ments for Complex Systems: New Techniques and Their
Applications. IEEE Transactions on Software Engineering.
6(1), p. 2-13, January, 1980.

[8] Holzmann, G.J. The Model Checker SPIN. IEEE
Transactions on Software Engineering. 23(5), p. 279-295,
May, 1997.

[9] Jackson, D. and Damon, C.A. Elements of Style:
Analyzing a Software Design Feature with a Counterexam-
ple Detector. IEEE Transactions on Software Engineering.
22(7), p. 484-495, 1996.

[10] Jackson, D. Automating First-Order Relational
Logic. In Proceedings of the ACM SIGSOFT Conference
Foundations of Software Engineering. p. 130-139, San
Diego, California, November, 2000.

[11] Jackson, D., Schechter, I., and Shlyakhter, I.
Alcoa: The Alloy Constraint Analyzer. In Proceedings of

the 22nd International Conference on Software Engineer-
ing. p. 730-733, Limerick, Ireland, June, 2000.

[12] Jackson, D. Alloy: A Lightweight Object Model-
ling Notation. ACM Transactions on Software Engineering
and Methodology (TOSEM). 11(2), p. 256-290, April,
2002.

[13] Jackson, D. Micromodels of Software: Light-
weight Modelling and Analysis with Alloy. <http://
sdg.lcs.mit.edu/alloy/reference-manual.pdf>, Software
Design Group, PDF, 2002.

[14] NASA Langley Research Center. What Is Formal
Methods? <http://shemesh.larc.nasa.gov/fm/fm-
what.html>, HTML, 2001.

[15] Parnas, D.L. and Madey, J. Functional Documents
for Computer Systems. Science of Computer Program-
ming. 25(1), p. 41-61, October, 1995.

[16] Ruys, T.C. SPIN Beginners' Tutorial. In Proceed-
ings of the SPIN 2002 Workshop. Grenoble, France, April,
2002. <http://spinroot.com/spin/Doc/SpinTutorial.pdf>.

[17] Spivey, J.M. The Z Notation: A Reference Manual.
Prentice-Hall International Series In Computer Science.
155 pgs., Prentice-Hall International: Englewood Cliffs,
N.J., 1989.

[18] Wing, J.M. A Specifier's Introduction to Formal
Methods. IEEE Computer. 23(9), p. 10-23, September,
1990.

	Abstract
	1. Introduction
	2. Alloy
	2.1. Language overview
	Atoms and Relationships
	Signatures
	Facts
	Assertions
	Functions
	Operators
	Modules

	2.2. Tool Functionality
	2.3. Technical Details
	2.4. Examples

	3. SCR
	3.1. Language
	Types
	Variables
	Assertions
	Assumptions
	Modeclass
	Conditions
	Events
	Mode Transition Table

	3.2. Technical Details
	3.3. Tool Functionality
	Syntax Tree
	Dictionaries
	Function tables
	Dependency Graph
	Automated Checking
	Syntax and Type Checking
	Disjointness
	Coverage
	Prover
	Verification with SPIN
	Simulations

	3.4. Examples

	4. Alloy Observations
	4.1. Appropriateness: Who, When, and How
	4.2. Scalars, Tuples, and Sets
	4.3. Refutation vs. Proof
	4.4. Graphical Visualization

	5. SCR Observations
	5.1. Helps automation
	5.2. Lack of available resources
	5.3. Difference in syntax between tools
	5.4. Tool interface is shaky
	5.5. Narrow scope

	6. Comparison between Alloy and SCR
	6.1. Objectives
	6.2. Lifecycle Stage
	6.3. Approach
	6.4. Visibility
	6.5. Language
	6.6. Reuse
	6.7. Assertions
	6.8. Output
	6.9. Coverage
	6.10. History

	7. Discussion
	8. References

