
Painless Web Proxying
with Apache mod_proxy

Justin R. Erenkrantz
University of California, Irvine and Google, Inc.

http://www.erenkrantz.com/oscon/
justin@erenkrantz.com

http://www.erenkrantz.com/oscon/
http://www.erenkrantz.com/oscon/

2

Why should I pay attention?

Apache HTTP Server committer since 2001

Also involved with APR and Subversion

Director, Apache Software Foundation

Engineering Intern, Google, Inc.

Ph.D. student at UC Irvine

Forward Proxy

3

Internet

example.com

Some other websiteForward Proxy

Server

Multiple clients route all HTTP traffic
through the same outgoing server

Reverse Proxy / Gateway

Distributes incoming requests to multiple
“identical” backends

4

V240

Internet

Reverse Proxy

Server

V240

V240

mod_proxy Goals

Squid is a fully featured HTTP forward
proxy cache - suitable for a workgroup, etc.

mod_proxy + mod_cache can do a passable
job as a forward caching proxy, but that
hasn’t been a main focus of recent work

Recent work on mod_proxy is aimed at
serving the needs of reverse proxies

5

What is Apache HTTP Server?

Derived from NCSA httpd

“Best web server money can’t buy”

Over 60% market share - Netcraft

Extensible, modular architecture

Has built-in support for forward and
reverse proxies

6

Apache HTTP Server History

1.0 released in December, 1995

1.3.0 released in June, 1998

2.0.35 (first 2.0 GA) released April, 2002

2.2.0 released December, 2005

2.2.2 released May, 2006

7

Overview of 2.x Features

2.0 was a major architectural rewrite

Provides a solid platform for further work

Introduction of APR abstracts OS details

Threadable MPMs = lower memory footprint

Filters bridge a long-time gap present in 1.x

IPv6 support, mod_ssl & mod_dav bundled

8

mod_proxy’s History

mod_proxy has an unusual history

First included in 1.1 (circa 1996)

Punted when 2.0 started as it was broken

Came back just in time for 2.0 GA

Rewritten for 2.2 with load balancing

Is the third time the charm? We hope.

9

mod_proxy Supported Protocols

HTTP/0.9, HTTP/1.0, HTTP/1.1

SSL traffic via mod_ssl

AJP13 - Tomcat’s mod_jk protocol

FTP (only supports GET)

CONNECT (SSL Proxying)

FastCGI support currently in trunk (2.3+)

10

Configuring a Forward Proxy

Listen 3128
ProxyRequests on
<Proxy *>
 Order Deny,Allow
 Deny from all
 Allow from 192.168.0
</Proxy>

Then, configure your browser to use http://proxy.example.com:3128/

All requests made by your local browser will be relayed to the forward
proxy. No direct connections to the outside world will be made.

11

http://proxy.example.com:3128
http://proxy.example.com:3128

What is load balancing?

Distribute load to several ‘identical’ servers

Gateways are transparent to external users
12

V240

Internet

Reverse Proxy

Server

V240

V240

Load balancing in mod_proxy

Pluggable module to balance load across all
available backends: mod_proxy_balancer

Request counting (round-robin)

Weighted traffic average (based on bytes)

A user can be “sticky” to a backend based on
cookies (JSESSIONID, PHPSESSIONID)

13

Backend optimizations

mod_proxy supports connection pooling

Connections are shared within a process

Useful if using worker or event MPM

Backends can be added or removed while the
system is online through the balancer-
manager interface

14

Reverse Proxy Example

Connection reuse:

ProxyPass /example http://backend.example.com min=0 max=20 smax=5
ttl=120 retry=300

ProxyPassReverse /example http://backend.example.com/

16

Option Description Default
min Minimum number of connections to keep open 0
max Maximum connections to keep open to server 1 or n*
smax (Soft maximum) Try to keep this many connections open max

ttl Time to live for each connection above smax none
retry If conn. fails, wait this long before reopening conn. 60 sec

* = If threaded MPM, use ThreadsPerChild; otherwise 1

http://backend.example.com
http://backend.example.com
http://bexample.com
http://bexample.com

Serve from front-end directly

ProxyPass /images !
ProxyPass /css !
ProxyPass / http://backend.example.com

17

ProxyPass with ! is useful when you have
static content (images, CSS, etc.)

Avoids the overhead of going to the backend

http://backend.example.com
http://backend.example.com

AJP / mod_proxy_ajp

httpd 2.2+ can talk to Tomcat natively!

Built-in bundled module to replace mod_jk

No external modules needed with 2.2

Configure Tomcat to listen on the AJP port

Set up Tomcat like you would with mod_jk

18

mod_proxy AJP Example

ProxyPass / balancer://example/
<Proxy balancer://example/>
 BalancerMember ajp://server1/
 BalancerMember ajp://server2/
 BalancerMember ajp://server3/
</Proxy>

The only difference is we replace http with ajp.
mod_proxy and mod_proxy_ajp does the rest.

19

FastCGI

Usually recommended with Ruby on Rails

Avoids the overhead of spawning new CGI
processes on each request

FastCGI daemon with a custom binary
protocol listener on port 8000

Only in httpd’s trunk (2.3+) - may be
backported to 2.2.x, but not sure yet.

20

mod_proxy FastCGI Example

ProxyPass / balancer://example/
<Proxy balancer://example/>
 BalancerMember fcgi://server1/
 BalancerMember fcgi://server2/
 BalancerMember fcgi://server3/
</Proxy>

Again, the only difference is we replace http with fcgi.

21

Your own protocol handler...

FTP and other protocols also supported by
just replacing the URI scheme

What if you want to create your own protocol
handler for mod_proxy?

It’s not that bad...almost.

Let’s use mod_proxy_fcgi as our example...

22

Walking tour of mod_proxy_fcgi

mod_proxy_fcgi is a good example to learn from because it has been written
relatively recently and can take clear advantage of the new features of mod_proxy.

It will just send the requests to the FastCGI daemon and receive a response.

Source:
http://svn.apache.org/repos/asf/httpd/httpd/trunk/modules/proxy/mod_proxy_fcgi.c

% wc -l mod_proxy_fcgi.c
 998 mod_proxy_fcgi.c

Exists only in trunk. mod_proxy_fcgi be backported to 2.2.x in the future...

23

All of the logic responsible for talking to FastCGI
is self-contained to this one module and one file.

https://svn.apache.org/repos/asf/httpd/httpd/trunk/modules/proxy/mod_proxy_fcgi.c
https://svn.apache.org/repos/asf/httpd/httpd/trunk/modules/proxy/mod_proxy_fcgi.c

Apache module terminology

Directive: Configuration syntax (httpd.conf)

Hooks: Code run at a certain point during
request lifecycle

Filters: Transformation of data: in and out

Bucket brigades: Streams of “Bits”

Handlers: Generation of data

24

mod_proxy_fcgi is a handler, but it interacts with all of the above

Four main steps for a reverse proxy

1. Determine which backend to direct request to

2. Make/reuse connection to the backend

3. Process the request and deliver the backend
response - fcgi_do_request()

4. Release the connection

25

Steps 1, 2, and 4 use common mod_proxy code;
Only step 3 is customized for FastCGI...

fcgi_do_request() phases

Tell FastCGI we’re starting a request...

Send the CGI environment

Calls dispatch() to handle request/response

Pass along the request headers and body

...wait...

Read the response headers and body

26

Dealing with Brigades

Apache 2.x deals with “bucket brigades”

Brigades are collections of buckets

Buckets are a “chunk” of data

Handler - more specifically, dispatch() -
creates bucket brigades and passes them
down the filter chain (and also reads buckets
for input too)

27

Passing along the request body

On our connection to the backend, we’ll do a loop around apr_poll() to
wait until it’s safe to write without blocking...
rv = apr_poll(&pfd, 1, &n, timeout);
...
if (pfd.rtnevents & APR_POLLOUT) {

Now, we’ll read data from the request body via input filters:
rv = ap_get_brigade(r->input_filters, ib, AP_MODE_READBYTES,
 APR_BLOCK_READ, sizeof(writebuf));

...we’ll format the ib brigade’s buckets into a flat iovec structure...

Pass the data to the FastCGI daemon using send_data():
rv = send_data(conn, vec, 2, &len, 0);

28

Processing the response

Inside the same apr_poll() loop, we’ll wait until we should read:
if (pfd.rtnevents & APR_POLLIN) {

Read the data from FastCGI using get_data helper:
rv = get_data(conn, (char *) farray, &readbuflen);

Translate the data into buckets:
b = apr_bucket_transient_create(readbuf, readbuflen, c->bucket_alloc);
APR_BRIGADE_INSERT_TAIL(ob, b);

Pass the ob brigade onto the output filters so it can be sent to client:
rv = ap_pass_brigade(r->output_filters, ob);

29

Note how HTTP headers are handled!
They must be set before first body byte is sent down the output

filter chain or they will not be sent to the client.

Caching with mod_proxy

Transparently cache from backend and store it on the local disk:
CacheRoot /var/cache/apache/
CacheEnable disk /

If the cache can not satisfy the request, it’ll process the request normally -
i.e. contact the reverse proxy.

Use htcacheclean to control the size of the on-disk cache:
htcacheclean -d15 -p/var/cache/apache -l250M
(Every fifteen minutes, ensure the cache is no bigger than 250MB.)

For more information about caching:
http://httpd.apache.org/docs/2.2/caching.html

30

http://httpd.apache.org/docs/2.2/caching.html
http://httpd.apache.org/docs/2.2/caching.html

Recap

mod_proxy supports a variety of protocols

HTTP, HTTPS, AJP, FastCGI, FTP...

Can act as a forward or reverse proxy

2.2+ features built-in load balancing

Examples of how a backend provider is
written using the mod_proxy framework

31

Painless Web Proxying
with Apache mod_proxy

Justin R. Erenkrantz
University of California, Irvine and Google, Inc.

http://www.erenkrantz.com/oscon/
justin@erenkrantz.com

http://www.erenkrantz.com/oscon/
http://www.erenkrantz.com/oscon/

