
UNIVERSITY OF CALIFORNIA,
IRVINE

Computational REST: A New Model for Decentralized, Internet-Scale Applications

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Justin Ryan Erenkrantz

Dissertation Committee:
Professor Richard N. Taylor, Chair

Professor Debra J. Richardson
Professor Walt Scacchi

2009



Portions of Chapters 2,3,4,5 adapted from “From Representations to Computations: The 
Evolution of Web Architectures,” in Proceedings of the 6th Joint Meeting of the European 

Software Engineering Conference and the ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (September, 2007) © ACM, 2007.

http://doi.acm.org/10.1145/1287624.1287660
Used with permission under Section 2.5 “Rights Retained by Authors” of the ACM 

Copyright Policy

All other content © 2009 Justin Ryan Erenkrantz



ii



DEDICATION

to

Mom and Dad

who always gave their unwavering love
even when their son chose the hard road
iii



TABLE OF CONTENTS

Page
LIST OF FIGURES  vi
LIST OF TABLES  viii
ACKNOWLEDGEMENTS  ix
CURRICULUM VITAE  xii
ABSTRACT OF THE DISSERTATION  xv
INTRODUCTION  1
CHAPTER 1: Architectural Styles of Extensible RESTful Applications  8

Software Architecture and Frameworks 8
Software Architecture in the World Wide Web 9
Representational State Transfer 10
Selecting Appropriate REST-based Applications 14
Framework Constraint Prism 15
REST Constraints 18
Architectural Characteristic Matrix 19
Origin Servers 19
User Agents 40
Libraries and Frameworks 70
Constructing RESTful Application Architectures 83
Discussion 89

CHAPTER 2: Dissonance: Applications  96
mod_mbox 96
Subversion 98
Lessons learned 106

CHAPTER 3: Dissonance: Web Services  108
Web Services: Approaches 109
Web Services: Examples 110
Web Services: SOAP 110
Web Services: “RESTful” Services 113
Web Services: Observations 116
Cookies 117
AJAX 119
Mashups 123

CHAPTER 4: CREST: A new model for the architecture of
Web-based multi-agency applications  126
Recap of Lessons Learned 126
Continuations and Closures 128
Computational Exchange 129
A Computational Exchange Web 131
CREST Axioms 135
CREST Considerations 141
CREST Architectural Style 150

CHAPTER 5: Revisiting Dissonance with CREST  151
Explaining mod_mbox 151
iv



Explaining Subversion 152
Explaining Web Services 154
Explaining Cookies 155
Explaining AJAX and Mashups 156
Evaluation 157

CHAPTER 6: CREST Framework and Experience  159
Example Application: Feed Reader 160
Design Considerations: Feed Reader 163
Additional Related Work 167

CHAPTER 7: Conclusion  169
Recap / Summary 169
Future Work 171
Future Work: Recombinant Web Services 171

REFERENCES  175
APPENDIX A:Architectural Characteristics of RESTful Systems  188
APPENDIX B:Selected Feed Reader Widget Source Code  189
v



LIST OF FIGURES

Page
Figure 1.1 Process view of a REST-based architecture 10
Figure 1.2 RESTful Architectural Constraint Prism 15
Figure 1.3 Origin Server Timeline with Netcraft Market Share Data 19
Figure 1.4 Apache HTTP Server Internal Architecture 25
Figure 1.5 Apache HTTP Server Internal Architecture 26
Figure 1.6 Internet Information Services (IIS5 Compatibility Mode) 36
Figure 1.7 Internet Information Services 6.0 Architecture 36
Figure 1.8 Web Browser Reference Architecture 41
Figure 1.9 Web Browser Timeline 41
Figure 1.10 Mozilla Architecture Breakdown 49
Figure 1.11 Mozilla Milestone 9 Architecture 50
Figure 1.12 Mozilla Concrete Architecture - circa 2004 52
Figure 1.13 Mozilla Architecture 53
Figure 1.14 Mozilla Architecture 53
Figure 1.15 Microsoft Internet Explorer for Windows CE 58
Figure 1.16 Microsoft Internet Explorer Architecture 58
Figure 1.17 Konqueror Architecture 64
Figure 1.18 Safari Architecture 66
Figure 1.19 Form Browser Example 87
Figure 2.1 mod_mbox architecture 99
Figure 2.2 mod_mbox URL structure 100
Figure 2.3 Idealized network architecture for Subversion 102
Figure 2.4 Initial realized architecture 103
Figure 2.5 Batch request architecture 105
Figure 2.6 Successful pipelined network flow 106
Figure 3.1 SOAP example 109
Figure 3.2 REST example 109
Figure 3.3 Google Maps 120
Figure 3.4 Yahoo! Mail - an AJAX application 121
Figure 3.5 Yahoo! Mail process timeline 123
Figure 3.6 AP News + Google Maps Mashup 124
Figure 3.7 Process view of AP News + Google Maps Mashup 124
Figure 4.1 An example of a closure in JavaScript 129
Figure 4.2 The resulting window produced by JavaScript closure 129
Figure 4.3 Example CREST program (in Scheme) 133
Figure 4.4 Example CREST program (in JavaScript) 133
Figure 4.5 Example CREST remote program (computational view)133
Figure 4.6 Example CREST spawn service (in Scheme) 134
Figure 4.7 Messages exchanged when using spawn-centric service 134
Figure 4.8 Example SPAWN mailbox URL 136
Figure 4.9 Example of dynamic protocol adaptation in CREST 140
Figure 4.10 Word count example with an intermediary 141
Figure 4.11 CREST URL example (expanded) 143
vi



Figure 4.12 CREST URL example (condensed) 143
Figure 6.1 Screenshot of CREST-based Feed Reader application 160
Figure 6.2 Feed Reader Architecture 161
Figure 6.3 Feed Reader Computations (overview) 161
Figure 6.4 Feed Reader Computations (detail) 162
Figure 6.5 Weak CREST Peer 163
Figure 6.6 Exemplary CREST Peer 163
vii



viii

LIST OF TABLES

Page
Table 1.1 Summary of REST constraints in terms of

domain and induced properties 13
Table 1.2 REST Architectural Constraints 18
Table 1.3 REST Architectural Constraints: NCSA httpd 23
Table 1.4 REST Architectural Constraints:

Early Apache HTTP Server 30
Table 1.5 REST Architectural Constraints: Apache HTTP Server 34
Table 1.6 REST Architectural Constraints: IIS 40
Table 1.7 REST Architectural Constraints: Mosaic 44
Table 1.8 REST Architectural Constraints: Early Netscape 48
Table 1.9 REST Architectural Constraints: Mozilla and Firefox 56
Table 1.10 REST Architectural Constraints: Internet Explorer 63
Table 1.11 REST Architectural Constraints: Konqueror 65
Table 1.12 REST Architectural Constraints: Safari 70
Table 1.13 REST Architectural Constraints: libwww 72
Table 1.14 REST Architectural Constraints: libcurl 75
Table 1.15 REST Architectural Constraints: HTTPClient 77
Table 1.16 REST Architectural Constraints: neon 79
Table 1.17 REST Architectural Constraints: serf 83
Table 3.1 Generic ROA Procedure 114
Table 3.2 HTTP Cookie Example 117
Table 4.1 Core CREST axioms 135
Table 4.2 Summary of CREST Considerations 142



ACKNOWLEDGEMENTS

I have been blessed to stand on the shoulders of giants. Without each of them and

their lasting influences, I would just be a sliver of who I am today and will be tomorrow.

Thanks to Tim for helping me to discover my true calling; thanks to Dan and Jerry

for showing me that I could make a living doing this computer stuff; thanks to Andy for

expanding my horizons.

Thanks to Steve and Domingos for introducing me to the joys of teaching.

Thanks to Roy for introducing me to the incredible world of open source and

academia. Thanks to Aaron who was my fellow traveler in the early days of our collective

Apache experiences. The rest of the gang at eBuilt - Josh, Phil, Mark, Seth, Steve, Neil,

Bill, Joe, Eli - you set the standard by which I've measured all other teams.

Thanks to Greg, Ryan, Roy, Jeff, Jim, Bill, Sander, Cliff, Aaron, Brian, Manoj,

Paul, Colm, Rudiger and all of the other Apache HTTP Server developers. There is simply

no better collection of developers that will ever assemble together on a project.

Thanks to Aaron, Bill, Ben, Bertrand, Brian, Brett, Dirk, Doug, Geir, Greg, Hen,

Henning, Jim, Ken, Sam, Shane, Stefano, Ken, Ben - you've made serving on Apache's

Board of Directors a blast.

Thanks to Greg for so many late nights of conversation and being the better half of

Serf.

Thanks to Karl, Jim, Fitz, Ben, C-Mike, Greg, Brane, Sander, Garrett, Hyrum, and

the other Subversion developers. We set out to replace CVS and we've done so much

more.

Thanks to Martijn, Sander, Garrett, Jens, Paul, Ben, Pier, Allan, Andy, Thom,
ix



Brane, Leo, Matt, Jason, Mike and Janus - we had a tremendous ride together at Joost.

Let's do it again sometime.

Thanks to Ken, Neno, Peyman, Jim, Roy, and Rohit for setting the bar so

ridiculously high before I even entered the halls of academia. Thanks to Eric, Girish, Jie,

and John for the laughs and showing me how to survive the world of being a graduate

student. Thanks to Scott for getting me through those early dog days when we were still

trying to find our way. Thanks to Joe for being a constant source of sunshine through the

years.

Thanks to Yuzo for always being a friend and a source of wisdom. Thanks to Kari

who has probably forgotten that she helped out with my very first project in this group

years ago. Thanks to Debi for all that you do behind the scenes. Thanks to Kiana, Nancy,

Steve, Laura, Jessica and all of the folks who have kept ISR humming over the years.

Thanks to Debra who has shown me how to juggle a million tasks and keep

everyone content. Thanks to Walt for helping me to take a step back and see the larger

picture when I just couldn't find it.

Thanks to Michael - if our paths didn't cross, this dissertation and research

wouldn't be half as interesting. All of our passionate discussions and conversations have

resulted in something far better than either one of us could ever have dreamed.

Thanks to Dick for always knowing what buttons to push and when to push them.

In all my travels, I have never found anyone else who trusts another (let alone graduate

students!) enough to let them find their own way even if we question what everyone else

(including ourselves!) takes for granted. You have set an example that I will always strive

to live up to every day.
x



Thanks to the American taxpayer! This material is based upon work supported by

the National Science Foundation under Grant Numbers 0438996 and 0820222. Any

opinions, findings, and conclusions or recommendations expressed in this material are

those of the author and do not necessarily reflect the views of the National Science

Foundation.
xi



CURRICULUM VITAE

Justin Ryan Erenkrantz

Education

Doctor of Philosophy (2009)
University of California, Irvine
Donald Bren School of Information and Computer Sciences
Department of Informatics
Advisor: Dr. Richard N. Taylor
Dissertation: Computational REST: A New Model for Decentralized, 
Internet-Scale Applications

Master of Science (2004)
University of California, Irvine
Donald Bren School of Information and Computer Sciences
Major Emphasis: Software

Bachelor of Science (2002) Cum Laude
University of California, Irvine
Information and Computer Science

Professional Experience

1/2007- Senior Software Engineer, Joost, Leiden, The Netherlands
1/2006-1/2007 Engineering Intern, Google, Mountain View, California
9/2002-9/2009 Graduate Student Researcher, Institute for Software Research, 

University of California Irvine
4/2000-3/2002 Junior Software Engineer, eBuilt, Irvine, California
7/1998-9/1999 Seasonal Associate, Ingram Micro, Santa Ana, California
7/1996-5/1998 C++ Programmer, Renaissance Engineering, Dayton, Ohio

Publications

Refereed Journal Articles

[1] "Architecting trust-enabled peer-to-peer file-sharing applications", by Girish 
Suryanarayana, Mamadou H. Diallo, Justin R. Erenkrantz, Richard N. Taylor. 
ACM Crossroads, vol. 12, issue 4, August 2006.

[2] "An Architectural Approach for Decentralized Trust Management", by Girish 
Suryanarayana, Justin R. Erenkrantz, Richard N. Taylor. IEEE Internet 
Computing, vol. 9, no. 6, pp. 16-23, November/December, 2005.

Refereed Conference and Workshop Publications

[3] "From Representations to Computations: The Evolution of Web Architectures", by 
Justin R. Erenkrantz, Michael Gorlick, Girish Suryanarayana, Richard N. Taylor. 
xii



Proceedings of the 6th Joint Meeting of the European Software Engineering 
Conference and the ACM SIGSOFT Symposium on the Foundations of Software 
Engineering, pp. 255-264, Dubrovnik, Croatia, September 2007.

[4] "Architectural support for trust models in decentralized applications", by Girish 
Suryanarayana, Mamadou H. Diallo, Justin R. Erenkrantz, Richard N. Taylor. 
Proceedings of the 28th International Conference on Software Engineering, pp. 
52-61, Shanghai, China, May 2006.

[5] "ArchEvol: Versioning Architectural-Implementation Relationships", by Eugen 
Nistor, Justin R. Erenkrantz, Scott A. Hendrickson, André van der Hoek. 
Proceedings of the 12th International Workshop on Software Configuration 
Management, Lisbon, Portugal, September 5-6, 2005.

[6] "PACE: An Architectural Style for Trust Management in Decentralized 
Applications", by Girish Suryanarayana, Justin R. Erenkrantz, Scott A. 
Hendrickson, Richard N. Taylor. Proceedings of the Fourth Working IEEE/IFIP 
Conference on Software Architecture, Oslo, Norway, June, 2004.

[7] "Supporting Distributed and Decentralized Projects: Drawing Lessons from the 
Open Source Community", by Justin R. Erenkrantz, Richard N. Taylor. 
Proceedings of the 1st Workshop on Open Source in an Industrial Context, 
Anaheim, California, October, 2003.

[8] "Release Management Within Open Source Projects", by Justin R. Erenkrantz. 
Proceedings of the 3rd Workshop on Open Source Software Engineering, Portland, 
Oregon, May 2003.

[9] "Beyond Code: Content Management and the Open Source Development Portal", 
by T.J. Halloran, William L. Scherlis, Justin R. Erenkrantz. Proceedings of the 3rd 
Workshop on Open Source Software Engineering, Portland, Oregon, May 2003.

Invited Publications

[10] "Rethinking Web Services from First Principles", by Justin R. Erenkrantz, Michael 
Gorlick, Richard N. Taylor. Proceedings of the 2nd International Conference on 
Design Science Research in Information Systems and Technology, Extended 
Abstract, Pasadena, California, May 2007.

Non-Refereed Publications

[11] "Architectural Styles of Extensible REST-based Applications", by Justin R. 
Erenkrantz. Institute for Software Research, University of California, Irvine, 
Technical Report UCI-ISR-06-12, August 2006.

[12] "Web Services: SOAP, UDDI, and Semantic Web", by Justin R. Erenkrantz. 
Institute for Software Research, University of California, Irvine, Technical Report 
UCI-ISR-04-3, May 2004.
xiii



Service

Program Committee, HyperText 2004
Program Committee, WoPDaSD 2008
Program Committee, OSS 2009
Webmaster, ICSE 2006
Internet Chair, ICSE 2011

Awards and Honors

Member, Phi Beta Kappa Society
Member, Golden Key National Honor Society
UC Irvine Outstanding Service by an Undergraduate
UC Irvine Campuswide Honors Program
Julian Feldman Scholarship Recipient
Dan and Jean Aldrich Scholarship Nominee
Member, National Honor Society

Associations and Activities

Member, Association for Computing Machinery (1998-present)
Member, IEEE Computer Society (2005-present)
Member, The Apache Software Foundation
Director, The Apache Software Foundation (2005-present)
President, The Apache Software Foundation (2007-present)
Treasurer, The Apache Software Foundation (2005-2007)
Vice-President, ACM, UC Irvine student chapter (2000-2001)
Contestant, ACM Programming Contest, UC Irvine student chapter (1998-2000)
Member, Undergraduate Computing Facility (1998-2002)
Representative, Associated Graduate Students, UC Irvine (2003-2004)
xiv



ABSTRACT OF THE DISSERTATION

Computational REST: A New Model for Decentralized, Internet-Scale Applications

By

Justin Ryan Erenkrantz

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2009

Professor Richard N. Taylor, Chair

REpresentational State Transfer (REST) guided the creation and expansion of the modern

web. The reformations introduced with REST permitted the web to achieve its goal as an

internet-scale distributed hypermedia system.  Yet, the web has now seen the introduction

of a vast sea of shared and interdependent services. Despite the expressive power of

REST, these new services have not consistently realized the anticipated benefits from

REST.

In order to better understand the unwritten axioms necessary to realize these anticipated

benefits, we survey the history and evolution of the web's infrastructure - including

Apache HTTP Server, Firefox, and Squid.  We also recount our experiences developing

such systems and the challenges we faced due to the lack of thorough design guidance.

We then critically examine these new services from the vast sea - including Service-

oriented architectures, RESTful Web Services, and AJAX - to glean previously

undocumented lessons about how these services are constructed and why they do not

consistently realize the benefits expected from REST.

Based on this, this dissertation presents a new architectural style called Computational
xv



REST (CREST).  This style recasts the web from a model where content is the

fundamental measure of exchange to a model where computational exchange is the

primary mechanism. This crucial observation keys a number of new axioms and

constraints that provide new ways of thinking about the construction of web applications.

We show that this new style pinpoints, in many cases, the root cause of the apparent

dissonance between style and implementation in critical portions of the web's

infrastructure.  CREST also explains emerging web architectures (such as mashups) and

points to novel computational structure.  Furthermore, CREST provides the necessary

design guidance to create new web applications which have not been seen before.  These

applications are characterized by the presence of recombinant services which rely upon

fine-grained computational exchange to permit rapid evolution.
xvi



INTRODUCTION

Background. In the beginning of the World Wide Web (WWW or Web), there was no

clear set of principles to guide the decisions being made by developers and architects. In

those early days, the web evolved chaotically and, to the extent there was any guidance at

all, it was weakly focused on client/server communications, the mechanics of content

transfer, and user interfaces. However, within a space of just a few years, exponential

growth and numerous design flaws threatened the future of the early Web - leading to the

introduction of the Representational State Transfer architectural style (REST) [Fielding,

2000].

As a software architectural style, REST introduces a set of principal design decisions that

ideally governs the Web. In return for following these architectural decisions, certain

properties are expected. The introduction of REST, by way of the HTTP/1.1 protocol,

restored comparative order to the Web by articulating the necessary axioms that must be

present to permit the continued growth of the web. Yet, as we illustrate in this dissertation,

dissonance with any architectural style inevitably occurs in the real-world as certain

design decisions dictated by the style are violated either knowingly or unknowingly. The

impact of the violations may range from relatively minor to severe. In the presence of such

violations, it is rational to expect that specific advantages that should be derived from the

style can be lost.

It is our view that the software designer’s proper role is to be able to articulate the draw-

backs of such dissonance and to be able to knowingly choose which tradeoffs are accept-

able against the ideal set forth by the style. This dissertation is our attempt to catalog the

continued evolution of the web with two aims: identifying how real systems have strayed
1



from REST and articulating what specific tradeoffs were made along the way even if the

original designers did not consciously realize which tradeoffs were being made. From

these observations, we are able to identify a recurring theme in the dissonance: REST was

primarily focused on the exchange of content and does not provide suitable guidance to

designers participating in today’s Web. Again, this is unsurprising as REST was intended

to serve as an architectural style for distributed hypermedia systems. However, as we dis-

cuss throughout this thesis, today’s Web has evolved far beyond the mere exchange of

content. We believe that this calls for a new architectural style which better addresses the

exchanges we see and shall continue to see on the Web.

More specifically, REST characterizes and constrains the macro interactions of the active

elements of the web: servers, caches, proxies, and clients. This reformation permitted the

Web to scale to its existing heights today where there are almost 240 million websites

[Netcraft, 2009] and over 1.5 billion users [Miniwatts Marketing Group, 2009]. However,

REST is silent on the architecture of the individual participant; that is, the components,

relationships, and constraints within a single active participant. Therefore, as we will dis-

cuss, designers looking to construct such participants (such as servers, caches, proxies,

and clients) were forced to independently relearn vital lessons that were neither properly

articulated nor centrally captured. Moreover, a new threat to the Web arose as rampant

experimentation and unforeseen Web applications threatened to rollback the improve-

ments and reformations introduced with REST and HTTP/1.1. We initially began explor-

ing the hypothesis that to maintain the fidelity of REST's principles at the level and

scalability of the web requires previously unspecified constraints on both the architecture

of those individual participants and the system-level architecture of the web itself. As
2



described in this dissertation, this investigation led us to a radical reconception of the web

which can serve to characterize and guide the next step in the web’s evolution.

Research Question. Throughout this dissertation, we can phrase our motivating question

as: What happens when dynamism is introduced into the Web? In this characterization, we

define dynamism as phenomena that must be explained as a manifestation of change,

whether through interpretation or alteration of the interpreter. As we discover through our

investigations of this question in this dissertation, we ultimately find that the underlying

architecture of the Web shifts, from a focus on the exchange of static content to the

exchange of active computations.

Insights. In order to come to that conclusion, we surveyed in detail a number of key web-

based infrastructure systems (see Chapter 1 starting on page 8 - including among others:

Apache HTTP Server, Mozilla Firefox, and libwww). In Chapter 2 starting on page 96, we

draw upon our personal experience as developers struggling to build dynamic web appli-

cations. In Chapter 3 starting on page 108, we then turn to emerging web services to eval-

uate how they handle dynamism. From these investigations, we have drawn the following

insights:

• Web Infrastructure (discussed in Chapter 1 starting on page 8): With little explicit 

coordination among developers during this period, critical web infrastructure applica-

tions evolved rapidly to support dynamism - both architectural and content-focused.

• Mobile code (discussed in Chapter 1 starting on page 8 as well as Chapter 4 starting on 

page 126): Due to the improvements in the JavaScript engines, the modern browser is 

far more powerful and capable today than it was in the mid-’90s. Distributed mobile 

code systems can be built on top of existing Web infrastructure.
3



• mod_mbox (discussed in Chapter 2 starting on page 96): Resources (as denoted by an 

URL) can represent more than just static content and can refer to various 'representa-

tions' generated on-the-fly to suit a particular domain (in this instance, web-based 

access to very large mail archives).

• subversion/serf (discussed in Chapter 2 starting on page 96): Decoupling communica-

tion and representation transformations internally within a user-agent's architecture 

can minimize latency, reduce network traffic, and improve support for caching. Also, 

it is feasible to deploy protocol-level optimization strategies that do not conflict with 

REST or existing protocols (in this case, many fewer requests were needed for the 

same operations). However, extreme care must be taken to not violate documented 

protocol expectations so as not to frustrate intermediaries (such as caching proxies).

• SOAP-based Web Services (discussed in Chapter 3 starting on page 108): Offering 

fine-grained services is unquestionably a noble goal as it promotes composition and 

first-party and third-party innovation. However, due to implementation deficiencies 

(such as lack of idempotency support and improper intermingling of metadata and data 

in SOAP messages), SOAP-based Web Services (and its sibling 'Service Oriented 

Architectures') are incapable of realizing the promise of fine-grained, composable ser-

vices without fundamentally violating the REST axioms that permitted the web to 

scale. SOAP-based Web Services, if widely adopted, would rollback the scalability 

improvements introduced with HTTP/1.1.

• RESTful Web Services (discussed in Chapter 3 starting on page 108): A lack of clear 

design guidance for construction of “RESTful” services that are not closely tied to 

'content' services (such as adding or removing documents) make for often madden-
4



ingly inconsistent and incomplete interfaces and, even though they handle the bulk of 

traffic for “web services,” RESTful Web Services have yet to reach their full potential.

• Cookies (discussed in Chapter 3 starting on page 108): Even relatively minor altera-

tions to a protocol may grant a 'toehold' to wide-spread architectural dissonance. The 

alternatives at the time were not fully articulated; therefore, web site designers took 

the easy (and better articulated through Netscape’s developer documentation) 

approach. This failure violated the statelessness interaction axiom of REST and raises 

inconsistencies with the semantics of the “back” button featured in today’s browsers.

• AJAX and Mashups (discussed in Chapter 3 starting on page 108): AJAX and mash-

ups illustrate the power of computation, in the guise of mobile code (specifically code-

on-demand), as a mechanism for framing responses as interactive computations 

(AJAX) or for “synthetic redirection” and service composition (mashups). No longer 

must 'static' content to be transported from an origin server to a user agent - we now 

transfer 'incomplete' representations accompanied by domain-specific computations 

applied client-side to reify the 'content' with which a user interacts. The modern 

browser has matured into a capable execution environment - it can now, without the 

help of third-party “helpers,” piece together XML and interpret JavaScript to produce 

sophisticated client-side applications which are low latency, visually rich, and highly 

interactive. Additionally, AJAX-based “mashups” serve as the computational interme-

diary (proxy) in an AJAX-centric environment.

CREST Architectural Style. In order to support this shift, we construct a new architec-

tural style called CREST (Computational REST). As discussed in much more detail in

Chapter 4 starting on page 126, there are five core CREST axioms:
5



• CA1. A resource is a locus of computations, named by an URL.

• CA2. The representation of a computation is an expression plus metadata to describe 

the expression.

• CA3. All computations are context-free.

• CA4. Only a few primitive operations are always available, but additional per-resource 

and per-computation operations are also encouraged.

• CA5. The presence of intermediaries is promoted.

CREST Considerations. We also encounter several recurring themes that must be

addressed by a computation-centric Web and are related to the axioms above:

• Computations and their expressions are explicitly named. (CA1, CA2)

• Services may be exposed through a variety of URLs which offer perspectives on the 

same computation. (CA1); interfaces may offer complementary supervisory function-

ality such as debugging or management. (CA4)

• Functions may be added to or removed from the binding environment over time or 

their semantics may change. (CA4)

• Computational loci may be stateful (and thus permit indirect interactions between 

computations), but must also support stateless computations. (CA3)

• Potentially autonomous computations exchange and maintain state (CA2, CA3); A 

rich set of stateful relationships exist among a set of distinct URLs. (CA1)

• The computation is transparent and can be inspected, routed, and cached. (CA5)

• The migration of the computation to be physically closer to the data store is supported 

thereby reducing the impact of network latency. (CA2)

These themes are discussed in more detail in Chapter 4 starting on page 126.
6



Explaining Dynamism in the Web. The shift to supporting dynamism on the web is but

an example of a more general form–network continuations–the exchange of the represen-

tations of the execution state of distributed computations. It is the presence and exchange

of continuations among web participants, in their various forms, that induces new con-

straints among and within participants. With this in mind, as discussed in Chapter 5 start-

ing on page 151, both prior complications in the structure of individual clients and recent

elaborations of the web such as AJAX or mashups are accounted for by a single funda-

mental mechanism: network continuations as web resources–an insight codified in the

principles of CREST.

CREST Framework. To both facilitate the adoption of CREST and to explore the impli-

cations and consequences of the style, we have constructed a CREST framework (dis-

cussed in detail in Chapter 6 starting on page 159) that allows us to build applications in

this style. Utilizing this framework, we have constructed a feed reader application which

offers novel computational and compositional aspects.

Contributions. In summary, this dissertation provides the following contributions:

• analysis of the essential architectural decisions of the World Wide Web, followed by 

generalization, opens up an entirely new space of decentralized, Internet-based appli-

cations

• recasting the web as a mechanism for computational exchange instead of content 

exchange

• a new architectural style to support this recasting (CREST)

• demonstrating how CREST better explains architectural dissonance

• a framework for building applications backed by CREST
7



CHAPTER 1

Architectural Styles of Extensible RESTful Applications

The existing Web infrastructure, and especially important components of that infrastruc-

ture like Apache, Mozilla, and others, can inform us about how to implement other REST-

ful components; indeed, examining the architectures of these tools and the infrastructure

as a whole is key. With the rich history of the Web, we now have over fifteen years of real-

world architectural evolution from which to base our examinations. Our aim in this chap-

ter is to classify the evolution, supported by real software architectures and frameworks,

and to indicate insights and techniques useful for developing applications as a whole—

that is, complete configurations of RESTful nodes that together form RESTful software

applications without compromising the beneficial properties of REST.

1.1. Software Architecture and Frameworks
An architectural style is a set of design guidelines, principles, and constraints that dictate

how components can be composed, behave, and communicate [Shaw, 1996]. Architectural

styles help to induce desirable qualities over software systems that conform to those

styles. Many of the most well-known architectural styles, such as pipe-and-filter, client-

server, and blackboard styles provide relatively few principles and constraints; as one

might expect, they also induce relatively few good software qualities. However, there are

other architectural styles, such as PACE [Suryanarayana, 2006], that are much more sig-

nificant. These include comprehensive constraints and guidelines, provide knowledge

about when and where these styles are applicable, how to apply the style, and supply tech-

nological frameworks and tools to facilitate constructing applications in the style.
8



An architecture framework is software that helps to bridge the gap between a specific

architectural style (or family of styles) and an implementation platform (e.g., program-

ming language, core set of libraries, or operating system). This makes it easier for applica-

tion developers to correctly (and compatibly) implement applications in a particular

architectural style. For example, it could be said that the stdio package is an architecture

framework for the pipe-and-filter style in the C programming language, since it provides

the language with distinguished stream constructs (in, out, and err), as well as methods

for interacting with those streams that are consistent with the rules of the pipe-and-filter

style. 

Architecture frameworks (even for the same style/implementation platform) can vary

widely in the amount of support they provide to developers. As we will examine in this

chapter, this is a natural tradeoff: frameworks may provide little support but be very light-

weight, or be heavyweight and complex but provide many services.

1.2. Software Architecture in the World Wide Web
It is essential to understand the intimate relationship between the architectural style, archi-

tecture instances, and actual system implementations. In the context of the modern Web,

some of the key participants are:

• REST - the principal architectural style

• HTTP/1.1 - an architectural instance of REST

• Apache HTTP Server - a system implementation of an HTTP/1.1 server

• Mozilla - a system implementation of an HTTP/1.1 user agent

• libWWW - an architectural framework providing useful services for implementing 

RESTful clients
9



Fielding’s diagram of the ‘process view’ of a REST-based architecture is presented in

Figure 1.1 on page 10. We will now introduce the REST architectural style. After intro-

ducing REST, we will begin selecting systems to survey.

1.3. Representational State Transfer
The Representational State Transfer (REST) architectural style minimizes latency and net-

work communication while maximizing the independence and scalability of component

implementations [Fielding, 2002]. Instead of focusing on the semantics of components,

REST places constraints on the communication between components. REST enables the

caching and reuse of previous interactions, dynamic substitutability of components, and

processing of actions by intermediaries - thereby meeting the needs of an Internet-scale

distributed hypermedia system. There are six core REST design axioms:

Figure 1.1: Process view of a REST-based architecture at one instance of time (From 
[Fielding, 2002])
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1.3.1. The key abstraction of information is a resource, named by an 
URL.
Any information that can be named can be a resource: a document or image, a temporal

service (e.g., “today's weather in Amsterdam”), a collection of other resources, a moniker

for a nonvirtual object (e.g., a person), and so on.

1.3.2. The representation of a resource is a sequence of bytes, plus repre-
sentation metadata to describe those bytes.
Hence, REST introduces a layer of indirection between an abstract resource and its con-

crete representation. Of particular note, the particular form of the representation can be

negotiated between REST components.

1.3.3. All interactions are context-free.
This is not to imply that REST applications are without state, but that each interaction con-

tains all of the information necessary to understand the request, independent of any

requests that may have preceded it.

1.3.4. Only a few primitive operations are available.
REST components can perform a small set of well-defined methods on a resource produc-

ing a representation to capture the current or intended state of that resource and transfer

that representation between components. These methods are global to the specific archi-

tectural instantiation of REST–for instance, all resources exposed via HTTP are expected

to support each operation identically.

1.3.5. Idempotent operations and representation metadata are encour-
aged in support of caching.
Caches are important to the goal of reducing latency. The metadata included in requests

and responses permits REST components (such as user agents, caching proxies) to make
11



sound judgements of the freshness and lifespan of representations. Additionally, the

repeatability (idempotence) of specific request operations (methods) permits representa-

tion reuse.

1.3.6. The presence of intermediaries is promoted.
Filtering or redirection intermediaries may also use both the metadata and the representa-

tions within requests or responses to augment, restrict, or modify requests and responses

in a manner that is transparent to both the client and the origin server.

Building upon these axioms, REST relies upon specific aspects of the distributed hyper-

media domain and adds specific constraints in order to induce a set of properties. These

are presented in Table 1.1 on page 13. It should be noted that while HTTP/1.1 is an instan-

tiation of REST, it does suffer from mismatches with REST. One of these mismatches, the

use of cookies, is discussed at length in Section 3.6 on page 117.
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Table 1.1: Summary of REST constraints in terms of domain and induced propertie

Domain Property REST-imposed Constraint REST-induced Benefit/Property

A user is interested in some 
hypermedia document stored 
externally

User Agent represents User
Origin Server has hypermedia 
docs

User Agent initiates pull-based reque
from an Origin Server
Requests from User Agent have a cle
associated response from an Origin 
Server

Hypermedia documents can 
have many formats

Metadata describing represen-
tation presented with document

User Agent can render documents ap
priately based on metadata

Many independent hypermedia 
origin servers

Define a set of common opera-
tions with well-defined seman-
tics (Extensible methods)

User Agent can talk to any Origin Se

A document may have multiple 
valid depictions with differing 
metadata

Distinction between abstract 
resource & transferred repre-
sentation
Metadata can be sent by user 
agent that indicates preferences 
(Internal transformation)

User Agent can request resource and 
receive an appropriate representation
based on presented metadata
One-to-many relationship between a 
resource and representation

Hypermedia documents are usu-
ally organized hierarchically +
uniquely identified servers

Resources explicitly requested 
by name

User Agent can ‘bookmark’ a locatio
and return to it later

Origin Server controls own 
namespace

Origin Server can replace backend an
persist identical namespace

Origin Server may not be able to 
receive inbound connections 
from the world
User Agent may not be able to 
make outbound connections to 
the world

Gateway node (Origin Servers) Even if direct paths are not available 
between two nodes, indirect paths ma
available through REST intermediariProxy node (User Agents)

No assumption of persistent con-
nection or routing; Hop-by-hop 
only
Any state must be explicitly 
transferred in each message

Gateway and Proxy nodes treat routin
each message independently (packet-
switched)
Duplicate copies of Origin Servers m
be deployed

Common hypermedia opera-
tions do not change the content +
Documents may change over 
time

REST nodes may need to handle 
large amounts of traffic or other-
wise optimize network band-
width

Idempotent methods Ability to reuse a representation

Cacheability components intro-
duced

Each node can independently have a l
cache of documents; cache can re-ser
representations

Expiration control data can be 
presented with a representation

Mechanism to locally expire cached c
tent

Control data presented in 
requests to indicate current 
cached version

Mechanism to cheaply re-validate ‘st
content in the cache
13



1.4. Selecting Appropriate REST-based Applications
Due to the ubiquitous deployment of the World Wide Web, there are plenty of critical sys-

tems which we can examine. In order to limit our selection, we constrained our selection

to those systems which reside at the level closest to the protocol–that is, they directly

implement the HTTP/1.1 protocol.   Leveraging REST’s classifications, we will divide our

discussion into three main categories: origin servers, user agents, and frameworks. How-

ever, as we will discuss, some origin servers also fulfill the responsibilities of a proxy or

gateway. With respect to the specific selections we make in each category, we will attempt

to choose a representative sample of the broad range of systems that are available.

Our focus on architectures will look at their extensibility characteristics–that is, the con-

straints it imposes on modifications to its architecture. The reason for selecting architec-

tures that explicitly support extensiblity is predicated on the diverse nature of web

applications. The architectures we survey provide the glue by interfacing with the larger

Web through protocol implementations and pass along the constraints of the Web on to its

extensions to form complete applications driven by end-users.

A vast range of applications have emerged that use the WWW in innovative ways - rang-

ing from electronic-commerce sites to collaborative news sites. The specific content

requirements often differ for each individual application. Instead of constructing an origin

server or user agent from scratch each time for every desired modification, these applica-

tions can take advantage of pre-existing architectures if they provide suitable extensibility

mechanisms. Therefore, those architectures which support extensibility have a definitive

advantage over static architectures in the RESTful world.
14



While our principal focus is on applications directly implement a REST-governed protocol

and offer extensibility capabilities, we will also present a brief discussion of:

• Server-side scripting languages (such as CGI)

• Client-side scripting languages (such as JavaScript)

• HTML forms

to discuss how they can further encourage conflicts and collisions with REST. However,

these applications traditionally build on top of the systems that we will select to survey in

detail. With these systems, there is an additional level of indirection with regards to REST

as they are necessarily constrained by the architectures of which they are a smaller part.

1.5. Framework Constraint Prism

In order to highlight the relevant material, our architectural examination will separate the

architecture into the following broad characteristics: portability, run-time architecture,

internal extensibility, external extensibility, and the influence of specific REST con-

straints. A diagram showing the relationships of these characteristics for RESTful archi-

Figure 1.2: RESTful Architectural Constraint Prism
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tectures is shown in Figure 1.2 on page 15. These characteristics are derived from the

direct decisions made by the system’s architects. We will define the border of our architec-

ture by identifying where an architect has direct influence over the architecture and where

control of the architecture is ceded to others. As a part of a larger RESTful world, these

architectures must operate with other independent architectures through a REST-governed

protocol. These architectures can also be integrated by external architects into a larger

architecture to incorporate the functionality provided by the system. Content developers

and extension designers can influence the system, but this work is largely limited to fol-

lowing the constraints established by the original architects.

Portability. We will define portability as the indirect limitations and constraints upon the

overall system architecture with respect to its environment. These may include the choice

of programming languages to implement with, operating systems that the system will exe-

cute on, and user interface toolkits. As we will discuss, each of these choices can intro-

duce constraints for robustness, scalability, and security. They may affect the degree to

which the system can conform to the environment in which it must operate. However,

these choices are typically not directly related to the functionality of the system. These

serve as the base platform characteristics.

Run-time architecture. In contrast to portability, run-time architecture will be defined as

the specific direct limitations and constraints that the architecture represents with respect

to the problem domain. Such constraints can include how the system parallelizes, whether

it is asynchronous, and what protocol features and protocols it supports. These constraints

are generally decided independently of any constraints defined as Portability. By building
16



on top of these run-time architecture constraints, a system will present characteristics that

govern what features it will ultimately be able to support.

Internal Extensibility. We will define internal extensibility as the ability to permit modi-

fication through explicit introduction of architectural-level components. This character-

izes the scope of changes that can be made by third-party developers in specific

programming languages. The critical characteristic here is what functionality does the

architecture provide to developers to modify the behavior of the system. For a user agent,

new toolbars can be installed locally through specific extensions. These toolbars can

change the behavior of the program via the internal extensibility mechanisms. Or, perhaps,

new protocols can be introduced.

External Extensibility. Similarly to internal extensibility, we will define the external kind

as those changes that can be effected without the introduction of architectural-level com-

ponents. This classifies what behavior can be passed through to the user without altering

the architecture. Each of these specific external extensibility mechanisms can be viewed

on a cost-benefit scale: how much access is provided at what cost? For an origin server, a

scripting language like PHP can be viewed as an external extensibility component. A PHP

developer can create a script that alters the behavior of the system without any knowledge

of the architecture inside the system. Typically, RESTful systems in the same area (such as

user agents) will share external extensibility mechanisms.

Integration.  Integration defines the ability of an architecture to participate as part of a

larger architecture. Some architectures that we will examine are intended to run only by

themselves. However, other architectures offer the additional capability to be reused as

part of a larger whole through a set of programming languages. These architectures may
17



provide control ranging from simply integrating a user agent inside another application to

creating a different type of server entirely.

REST Constraints. The final broad characteristic we will leverage is to examine the

degree to which the architecture constrains its extensions to follow REST-derived con-

straints. A more detailed discussion of these constraints follows.

1.6. REST Constraints
We earlier presented a summary of the domain aspects, REST constraints, and induced

behavior in Table 1.1 on page 13. In our subsequent analysis, we will specifically examine

the behavior derived from these architectures to see how they deal with these REST con-

straints as listed in Table 1.2 on page 18.

Table 1.2: REST Architectural Constraints

Constraint Assessing Degrees of Conformance to Constraint

Representation 
Metadata

How much control, for both requests and responses, does 
the architecture permit over representation metadata?

Extensible Methods How much flexibility is offered to redefine or add meth-
ods within the architecture?

Resource/
Representation

How well does the architecture treat the divide between 
requests for a resource and resulting representations?

Internal
Transformation

How conducive is the architecture to permitting represen-
tation transformations inside the system?

Proxy How does the architecture enable the use of proxies and 
gateways?

Statefulness How much control does the architecture provide to con-
trol statefulness?

Cacheability In what ways does the architecture support cache compo-
nents?
18
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1.7. Architectural Characteristic Matrix
A matrix summarizing all of the architectural characteristics of these selected systems is

presented in Appendix A.

1.8. Origin Servers
Fielding defines an origin server as:

An origin server uses a server connector to govern the namespace for a requested 

resource. It is the definitive source for representations of its resources and must be 

the ultimate recipient of any request that intends to modify the value of its 

resources. Each origin server provides a generic interface to its services as a 

resource hierarchy. The resource implementation details are hidden behind the 

interface.[Fielding, 2000, 5.2.3]

In common usage on the web, this is characterized by an HTTP server. Figure 1.3 on

page 19 presents a timeline of market share as determined by Netcraft’s Web Server Sur-

vey ([Netcraft, 2009]) for the three origin servers we will now discuss:

igure 1.3: Origin Server Timeline with Netcraft Market Share Data from [Netcraft, 2009

August 1995
Netcraft Survey Begins

NCSA 0.5

NCSA 1.3

Apache 0.2
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May 1997
1 million servers

Apache 1.3
with Win32
support

IIS 3.0
IIS 2.0

Apache 1.2
with HTTP/1.1
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IIS 4.0

NCSA 1% share

APR
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April 1999
5 million servers

IIS 5.0

Apache 2.0
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Code Red
Worm

Apache
2.0.35

September 2000
20 million serversmber 1993

May 2004
50 million servers

IIS 6.0

30 million
Apache
servers

Apache
1.0

McCool et al 
leave for Netscape

NCSA 1.5.2

NCSA
1.0

NCSA
1.4.2
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• NCSA HTTP Server

• Apache HTTP Server

• Microsoft Internet Information Services

1.8.1. NCSA HTTP Server
One of the early origin servers for the Web was produced at the National Center for Super-

computing Applications (NCSA) at the University of Illinois at Urbana-Cham-

paign[Kwan, 1995].   The name for this Web server was NCSA HTTPd (httpd) and it was

released to the public domain for all to use at no cost. httpd was initially designed and

developed by Rob McCool and others at NCSA. After McCool left to join Netscape in

1994, NCSA development largely ceased with a few later ultimately unsuccessful efforts

by NCSA personnel to restart development around httpd.

NCSA ARCHITECTURE

Run-time architecture. The d in HTTPd refers to the Unix concept of a daemon. The

word daemon has a long tradition in the Unix operating environment to mean a long-run-

ning process that assists the user. Therefore, HTTPd stands for “HTTP daemon” - mean-

ing that the server responds to incoming HTTP traffic by generating the proper responses

to the users without any direct intervention by the server administrator.

Upon initial execution, the httpd process would start listening for incoming HTTP traffic.

As new HTTP requests arrived, this listening process would spawn two identical copies -

in Unix parlance, the parent forked a child. One process (the parent process) would

resume listening for more HTTP requests. The other instance (the child) would process the

just-received incoming connection and generate the response. After that one response was

served back to the client, this child process would close the socket and terminate.
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This particular interaction model is particularly suited for a web server due to the repeti-

tive nature of HTTP requests. Each resource on an HTTP server can be requested by inde-

pendent clients a large number of times and possibly in parallel. If the resource has not

changed (retrieving a page is a read-only operation), then the representations served for

each one of these requests should be identical as any state will be explicit in the request

exchange. (HTTP labels methods having this behavior as idempotent.) This attribute

allows one server process to independently handle any incoming requests without having

to coordinate with other server instances.

However, due to the uneven nature of Web traffic, it does not make sense to dedicate one

server instance to a particular ‘part’ of the server’s namespace[Katz, 1994]. If the

namespace were divided as such and a large burst of activity were to come in on one por-

tion of the namespace, this could present significant bottlenecks - as that one process

would be tied up serving all of the requests for that dedicated namespace. Therefore,

httpd’s run-time architecture allows all instances to respond to any part of the namespace

independently. In addition to parallelizing on a single machine, this architecture also

allows for replicated instances of httpd to work across multiple machines by the use of

round-robin DNS entries and networked file systems[Katz, 1994][Kwan, 1995].

Portability. httpd was written in the C language and the implementation was solely tar-

geted towards Unix-derived platforms. Therefore, it had no intrinsic concept of portability

outside of C and Unix systems. Yet, even Unix-derived platforms differ from each other

greatly and httpd utilized language preprocessor macros for each flavor of the operating

system that was explicitly supported. Additionally, the administrator had to hand-modify

the build system in order to indicate which operating system httpd was being built on.
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Therefore, in comparison to modern-day servers, the portability of the original NCSA

httpd server was quite restricted.

Internal Extensibility. While the code base behind httpd was relatively small, there was

no clear mechanisms for extending the internal operations of the server. For example,

most of the code relied upon global variables without any dedicated structures or objects.

Therefore, if you wanted to support extensions to the protocol, there was no level of

abstraction through which to effect these changes.

External Extensibility. Even without an internal extensibility layer, httpd did provide an

effective external extensibility mechanism - the Common Gateway Interface (CGI)[Coar,

1999]. The only other mechanism to produce a representation for a resource with httpd

was to deliver static files off the file system. CGI was placed as an alternative to static files

by allowing external dynamic execution of programs to produce output that a specific cli-

ent will then receive. We will explore CGI more completely in “Common Gateway Inter-

face (CGI)” on page 84.

With CGI, we begin to see a constraint of the external architecture peeking through: HTTP

mandates synchronous responses. While the CGI program was processing the request to

generate a response, the requestor would be ‘on hold’ until the script completes. During

the execution of the script, NCSA warned that “the user will just be staring at their

browser waiting for something to happen.”[National Center for Supercomputing Applica-

tions, 1995] Therefore, CGI script authors were advised to hold the execution time of their
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scripts at a minimum so that it did not cause the user on the other end to wait too long for

a response.

Lessons Learned. Run-time architecture featuring parallel identical processes is well-

suited for HTTP servers; extensibility focused on ‘end user’ extensibility instead of

‘developer’ extensibility; some characteristics of HTTP introduce very specific and other-

wise awkward features to CGI.

1.8.2. Apache HTTP Server
The Apache Project formed in February 1995 to resume active development of NCSA’s

popular but abandoned httpd. The goal of this new project was to incorporate bug fixes

and new features. Besides important social innovations in distributed and open-source

software development [Fielding, 1999][Mockus, 2000], one of the keys to Apache’s long-

term success can be attributed to the sustained proliferation of third-party modules (now

totalling over 300) around the core product. (This author is a contributor to the Apache

HTTP Server.)

Table 1.3: REST Architectural Constraints: NCSA httpd

Constraint Imposed Behavior

Representation 
Metadata

Explicit global values for each header value

Extensible Methods Only through CGI’s REQUEST_METHOD environment

Resource/
Representation

No structure for requests or responses

Internal
Transformation

None

Proxy No, could not serve as a proxy

Statefulness No explicit session management

Cacheability No
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As shown in Figure 1.3 on page 19, the Apache HTTP Server is currently the most popu-

lar HTTP server used today. The various versions and derivatives of Apache collectively

account for around 70% of the servers in use today [Netcraft, 2009], and has been the mar-

ket leader for over nine years [The Apache Software Foundation, 2004]. The long-term

mission of the Apache HTTP Server Project is to “provide a secure, efficient and extensi-

ble server that provides HTTP services in sync with the current HTTP standards.” [The

Apache Software Foundation, 2004]

Due to its lineage from NCSA httpd codebase, there are a lot of surface similarities

between the two codebases. In stark contrast to NCSA httpd, however, the internals of the

Apache HTTP Server are characterized by an extremely modularized design with almost

all aspects of functionality available to be altered without modifying the core code. We

will consider two snapshots of Apache’s architecture: the ‘initial’ Apache architecture

comprising all releases through the 1.3 series and the current release series (2.x and

beyond).

INITIAL APACHE ARCHITECTURE
With the split of Apache from NCSA, there was a concerted change to make the internals

of the new server much more extensible. Instead of relying upon custom ad hoc modifica-

tions to the codebase, the intention was to allow third-parties to add modules at build-time

and run-time that modified Apache’s behavior. These changes were balanced by a strong

effort to be end-user backwards compatible with NCSA httpd to ease the effort in migrat-

ing to Apache.

The principal mechanisms behind this re-architecture were introduced in the “Shambala”

fork by Robert S. Thau. These changes were merged into the mainline Apache codebase to
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become Apache 0.8.0 release in July 1995. These modifications formed the architectural

basis of all future Apache releases. An exposition of the rationales for these decisions

were put forth in a paper by Thau[Thau, 1996]. We will now summarize these rationales

and their impact on the Apache architecture. A summary depiction of Apache’s architec-

ture, as produced by The Apache Modeling Project, is presented in Figure 1.4 on

page 25[Gröne, 2002][Gröne, 2004]. Hassan and Holt present another description of

Apache’s architecture in Figure 1.5 on page 26[Hassan, 2000].

Run-time Architecture. As with NCSA httpd, early versions of Apache rely upon fork-

ing to handle incoming requests. However, Apache introduced the ability to reuse children

via a “prefork” mechanism and to run these children at a low-privilege level. On Unix

platforms, the cost of starting up a new process is relatively high. With NCSA httpd, every

incoming connection would spawn a fresh process which caused a delay as the operating

environment launched this new process. Instead, Apache starts (“preforks”) a configured

number of children ahead of time and each process would take turns handling incoming

Figure 1.4: Apache HTTP Server Internal Architecture (From [Gröne, 2004] Figure 
4.6)
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requests. By having the servers initialized ahead of time, this allows a better response time

and for spare capacity to be held in reserve. Any spare servers would be idle waiting for

incoming requests and the process initialization costs can be amortized.

In this preforking architecture, there is a parent process that keeps an eye on the children

that are running. This parent is responsible for spawning or reaping children processes as

needed. If all of the children are active and there is still space for new children, it will cre-

ate a new child. On the other hand, if too many children are idle, it will remove some chil-

dren from operation. While the parent process usually executes as a privileged user, it does

not directly service any incoming requests from the users. Instead, the children that inter-

act with clients are executed as an unprivileged user. This means that the attack surfaces

for security attacks is minimized - however, there have been security exploits on certain

operating systems that will elevate a unprivileged user to a privileged user.

Figure 1.5: Apache HTTP Server Internal Architecture (From [Grosskurth, 2005])
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Portability. The core implementation language of Apache is unchanged from httpd, so it

is still written in C. While Unix is still the main target platform for Apache, later releases

of Apache 1.x added support for Windows, OS/2, and Netware. While remaining in C,

Shambala took advantage of some constraints enforced by the programming language and

turned it into a substantial performance advantage.

One of the defining characteristics of C is that it requires explicit allocation (malloc) and

deallocation of memory (free). These memory operations are rather expensive, so a pool-

based allocation system was introduced in Shambala[Thau, 1995][The Apache Software

Foundation, 2003]. This opportunity for efficiency is only available due to the well-

defined lifecycle of HTTP traffic. In Apache, needed memory chunks are allocated from

the operating system as part of normal operation during a request through malloc invoca-

tions. Normally, Apache would have to return all of the allocated memory back to the

operating system through explicit invocations of free. If the each allocation was not

explicitly freed, then memory leaks could occur. Over the lifetime of a server process with

constant traffic and memory leaks, this could eventually overload the memory capabilities

of the system.

With the new pool system introduced in Shambala, when a response is completed, the

allocated memory is instead added to a internal free-list maintained by Apache. On subse-

quent requests to the same process, the memory on the free-list can be reused instead of

allocating more memory from the operating system. In practice, after a few requests are

served, no more memory allocation is required from the operating system - previously

allocated memory can suffice for subsequent runs. This pool model also has a large benefit

for both internal and external developers. Since Apache tracks the memory itself, there is
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far less opportunity for memory leaks which impair the memory footprint of Apache. This

can permit developers to not have to worry about detecting memory leaks in their modules

as the pool system automatically tracks all allocations. In comparison to languages that

offer intrinsic garbage collection (such as Java), there is no substantial performance pen-

alty incurred for maintaining this list. Actually, in performance tests, this pool reuse sys-

tem is a significant structural advantage of Apache that allows it to fare well against other

HTTP servers[Gaudet, 1997].

Internal Extensibility. As discussed earlier, NCSA’s architecture relied heavily upon CGI

programs to produce content or alter the server’s behavior. The CGI system suffers a

severe drawback in that it is largely decoupled from the web server. This independence

from the server comes at a steep cost as there is no clean mechanism to share configura-

tion information between the web server and CGI application. This can create challenges

for the content developer as their application becomes more complex by enforcing such a

strict separation. Additionally, there are also performance implications with using CGI

programs in that their process lifetime is only that of a particular request. Techniques like

FastCGI can avert this performance issue by attempting to reuse a script interpreter across

multiple connections[Brown, 1996]. However, this can introduce compatibility problems

when global variables are used in CGI programs that are not correctly reset after each

request.

Therefore, Apache specifically allowed for extensibility internally by exposing fixed

points at which a third-party can interface in-process with the web server. Apache’s initial

extensibility phases, called hooks, included:

• URI to filename translation
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• several phases involved with access control

• determining the MIME type of the resulting representation

• actually sending data back to the client

• logging the request

Each of these play a critical part in the functionality of the web server, but they can be log-

ically independent. For example, the MIME type of a representation (which is content-

specific) would not typically indicate a relationship as to how the server should log the

request (which is usually server-specific). However, if there is a relationship, then a mod-

ule can still hook into all needed phases and coordinate execution. Besides allowing

dynamic behavioral modification through hooks, Apache has an internally extensible con-

figuration syntax which allows dynamic registration of new commands with module-spe-

cific directives.

The drawbacks of this internal extensibility mechanism is that all of the modules run at the

same privilege level and share the same address space. Consequently, there are no barriers

preventing a malicious module from compromising the integrity of the system. A poorly

written Apache module could expose a security vulnerability that could cause the server to

crash. However, Apache’s run-time architecture limits the effects of a bad module to only

the specific process handling the request. Other children that are servicing a request are

not affected if any other child dies through a software fault.

External Extensibility. Scripting languages such as PHP and JSPs are accommodated as

handlers within Apache. These are specific modules that register for the handler hook and

can deliver content for a specific resource. These handlers can be associated through con-

tent types or file extensions among other mechanisms. Therefore, in the case of PHP, its

handler is responsible for converting the PHP script into usable HTML representations.
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The main advantage of having these scripts use a handler over a CGI mechanism is that

there is no inter-process communication overhead required. Additionally, the scripting

languages can take advantage of more Apache-specific features than what are available

only through CGI.

REST Constraints. Apache represents an improvement over the NCSA httpd in con-

straining the extensions to follow the REST style. There is a clear separation between data

and metadata with dedicated metadata structures. There is also less usage of global vari-

ables through dedicated request structures. However, Apache does not enforce a clear sep-

aration between the resource and representation as they share the same data structure

(request_rec). A proxy component was added in later versions of Apache 1.3. However,

these modules had significant implementation and design problems that resulted in its

removal from later releases - limiting Apache’s effectiveness as a proxy/gateway. As we

will discuss in the following section, improving these modules was a factor behind some

subsequent architectural changes.

Table 1.4: REST Architectural Constraints: Early Apache HTTP Server

Constraint Imposed Behavior

Representation 
Metadata

Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through a dedicated request field

Resource/
Representation

Response and request are coupled in the same structure

Internal
Transformation

None

Proxy Present in early versions of 1.3, but removed due to problems

Statefulness No explicit session management

Cacheability None
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Lessons Learned. Optimizations created based on language-choice and domain-specific

constraints; Run-time architecture modified to better suit the underlying platform; Modu-

larity and internal extensibility heavily stressed through hooks and discrete separated

dynamic modules; External extensibility through scripting languages; improvements in

maintaining REST constraints.

APACHE 2.X ARCHITECTURE
The Apache HTTP Server 2.0 has redesigned the popular Apache HTTP Server by incor-

porating feedback from the development and user community. While remaining faithful in

spirit to the initial design of the 1.3 series server, the 2.0 series does break compatibility

with the previous version in several areas.

Resolved design issues. Thau identified a number of design shortcomings of Apache in

[Thau, 1996] - all of these issues have been resolved in Apache 2.x. The first issue raised

is that Apache did not have a protocol API. The protocol code was refactored in 2.x and

now has modules that implement FTP, SMTP, and NNTP in a clear and principled

approach. Secondly, Thau indicated that it was hard to customize existing modules. This

has been addressed by the introduction of the provider API, first introduced in mod_dav.

Several other modules (such as authorization and caching modules) have since been bro-

ken down to use this provider API to easily alter their operation. Thirdly, Thau identified

that the order dependencies of hooks were problematic. There is now a different hook reg-

istration system that allows explicit ordering of hooks (including predecessors and succes-

sors). Finally, Thau identified the lack of hooks that conform to system startup and

teardown. These have now been added.
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Portability and Run-time Architecture. 2.0 introduces a new portability layer called the

Apache Portable Runtime that provides a “predictable and consistent interface to underly-

ing platform-specific implementations.”[The Apache Portable Runtime Project, 2004]

The path to APR was, however, not a straight line. After the introduction of support for

Netware, Windows, and even more Unix variants in Apache 1.3, a consensus emerged that

a comprehensive portability strategy had to evolve to support more platforms in a cleaner

way. There were initially two concurrent strategies: porting Apache to Mozilla’s new run-

time layer (NSPR) and the introduction of the Multi-Processing Modules (MPM).

These two approaches were noticeably different: one (NSPR) would replace all of the plat-

form specific code out of Apache and move all of it into a portability layer. A move to a

new portability layer, such as NSPR, would necessitate a rewrite of the entire code base to

use the primitives supported by the portability layer. In return, all of the concerns about

supporting a new operating system would be off-loaded to the portability layer.

The other approach would isolate all of the “complicated” platform-specific code into a

new policy layer within Apache - called the MPM. The rest of the code would rely upon

standard ANSI C semantics. The MPM would specify the policy for handling the incom-

ing connections: the default policy would be the prefork strategy initially introduced with

Shambala and discussed earlier. Other policies would include a worker strategy that lever-

aged a hybrid process-thread approach, a mpm_winnt strategy that worked only on Win-

dows platforms, and a mpm_netware module for Netware systems. The goal of the MPM

design was that the process or thread management code these threads would be restricted

to these policy modules. This containment was based on the belief that the difficult porta-

bility aspects could be constrained to the MPM modules alone.
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These branches evolved in parallel until the group forced a decision over the adoption of

the NSPR modules. The key argument against NSPR was not a technical one - but, rather,

a social one - the developers did not agree with the licensing terms presented by NSPR.

An attempt to resolve these concerns were inconclusive - therefore, the developers started

their own portability layer based on the code that was already present in Apache 1.3. This

code formed the basis for the Apache Portable Runtime (APR) layer first present in 2.0.

However, the MPM components were also ultimately integrated into the new APR branch.

Therefore, even though the strategies seemed at odds initially, both strategies were eventu-

ally merged. The code was rewritten on top of a new portability layer and a policy layer

was introduced to abstract the process management code. Through the MPM system, a

number of strategies have been experimented with - including a policy that supports asyn-

chronous writes introduced in the recent 2.2 release[The Apache HTTP Server Project,

2005].

Internal Extensibility. A recurring issue that was raised by developers throughout the 1.3

series was that it was hard to layer and combine functionality between modules. If a devel-

oper wanted to extend how REST representations are generated in the Apache handlers,

code had to be duplicated between modules. Therefore, a major advance in the 2.0 release

was the addition of a layering system for data to allow principled composition of features

and resource representation transformations (e.g., on-the-fly compression and dynamic

page generation). Compatibly integrating this system while maintaining as much back-

ward compatibility as possible was a key development challenge.

Another issue with the 2.0 series was the evolution of the mod_proxy code, which allows

a standard Apache httpd server instance to act as a proxy. Since Apache’s original design
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intended it to act as an HTTP server, the prevailing design assumptions throughout the

code is that the system is an HTTP server not an HTTP client. However, when a proxy

requests a page from an upstream origin server, it acts as a client in the REST architecture.

The concept of input and output from the architecture perspective became switched with a

proxy. This presented a number of mismatches between mod_proxy and the rest of the

httpd architecture that required design compromises to compensate.

Integration. A set of extensions to the Apache HTTP Server allow the core server func-

tionality to be integrated into a larger and different architecture. Through modules such as

mod_perl and mod_python, new applications around the core Apache HTTP Server archi-

tecture can be constructed. For example, the Perl-based qpsmtpd SMTP mail server can

leverage the features of Apache through mod_perl[Sergeant, 2005]. This arrangement

offloads all of the connection management and network socket code from Perl to the

httpd’s C core, but any extensions to qpsmtpd can be maintained in Perl.

Table 1.5: REST Architectural Constraints: Apache HTTP Server

Constraint Imposed Behavior

Representation 
Metadata

Headers are in a hash-table structure; can be merged

Extensible Methods Yes, through dedicated request field

Resource/
Representation

Response and request are coupled in the same structure

Internal
Transformation

2.0 adds filter support; 2.2 permits more complicated chains

Proxy Can serve as a proxy in 2.0; load-balancing support in 2.2

Statefulness No explicit session management

Cacheability Production-quality in 2.2 release
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Lessons learned. Portability concerns led to a new portability layer and new run-time

architecture policy layer; the absence of an internally extensible RESTful representation

required the shoe-horning of filters; early design assumptions of where a node fits in the

overall REST architecture challenged as the system evolves; use in different server-based

applications.

1.8.3. Microsoft Internet Information Server (IIS)
Microsoft first released their HTTP server named Internet Information Server (IIS) in Feb-

ruary, 1996. This initial version of IIS was only available on Windows NT 3.51. Over

time, it was updated to work on newer releases of the Windows platform. The early

releases of IIS featured basic HTTP and FTP serving support. Over time, more features

and extensibility models were added. At the same time, however, many security vulnera-

bilities were exposed in IIS servers. This led to a number of prevalent worms, such as

Code Red, on the Internet that spread through the vulnerabilities in IIS[Moore,

2002][Cook, 2005].

IIS 6.0, first included with Windows 2003 Server, was the beginning of a security-centric

architectural rewrite for Microsoft’s server products. At this point, Microsoft also renamed

IIS to stand for “Internet Information Services.” After numerous security vulnerabilities

had to be fixed, Microsoft engineered a number of modifications to the IIS architecture

with an eye towards security. Besides being no longer installed by default, IIS 6.0 offers a

number of features focused on forcing administrator to make security-conscious decisions

about their server.

Portability. From the outset, IIS was only intended to operate on Microsoft’s Windows

platforms. Therefore, it can take extreme advantage of Windows-specific functionality
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that are only available on that platform. However, this means that portability to other oper-

ating systems is not feasible with the IIS architecture. One distinction that is challenged

with IIS 6.0 is the separation between the kernel mode and user mode in the operating sys-

tem.

Figure 1.6: Internet Information Services (IIS5 Compatibility Mode) (From 
[Microsoft Corporation])

Figure 1.7: Internet Information Services 6.0 Architecture (From [Microsoft 
Corporation])
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A new kernel-mode driver called http.sys, running at the highest privileges inside the Win-

dows kernel, was introduced that takes over a portion of the HTTP functionality from the

traditional user-mode applications[Microsoft Corporation][Wang, 2005]. The goal of this

new driver was to “to increase Web server throughput and scalability of multiprocessor

computers, thereby significantly increasing the following: the number of sites a single IIS

6.0 server can host; the number of concurrently-active worker processes.”[Microsoft Cor-

poration]

Run-time architecture. IIS presents the administrator with two run-time architectural

models to chose from. Depicted in Figure 1.6 on page 36 is the IIS 5.0 isolation mode

architectural model. This legacy model is targeted towards “applications developed for

older versions of IIS that are determined to be incompatible with worker process isolation

mode.” [Microsoft Corporation] The downfall of this architectural model is that all

instances share the same process - one fault could jeopardize the reliability of the server.

This architectural fault led to numerous reliability problems[Peiris, 2003][Web Host

Industry Review, 2001].

To increase reliability, IIS 6.0 introduces a new run-time architectural option called

Worker Process Isolation Mode, depicted in Figure 1.7 on page 36. This model defines a

collection of application pools that are assigned to a specific web site - a fault in one web-

site will only jeopardize the application pool it resides in.[Microsoft Corporation] These

pools register with the kernel-mode HTTP driver for a particular namespace and incoming

requests for that namespace is then forwarded to the appropriate user-space process to

generate a response.[Smith, 2004]
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Internal Extensibility. ISAPI is the code name given to Microsoft’s Internet Server API

specification, which debuted with the initial release of IIS. Microsoft claims that they ini-

tially positioned ISAPI to compete with CGI - however it differs substantially from CGI.

ISAP modules would be executed inside the server process not outside the server process

like CGI[Schmidt, 1996]. ISAPI modules are required to be compiled as Windows DLLs

and explicitly inserted into the server configuration. Therefore, even with Microsoft’s ini-

tial characterization as ISAPI as a competitor to CGI, we will characterize ISAPI as an

internal extensibility mechanism instead of an external extensibility mechanism.

ISAPI offers two dimensions of access: extensions and filters. ISAPI extensions must be

explicitly registered for a configured URI namespace[Microsoft Corporation]. For conve-

nience, specific file types can also be associated with an ISAPI extension - files bearing an

.asp extension can be mapped to the ASP.dll extension. In this manner, extensions are like

CGI applications as they create a virtual namespace under its own control; however,

extensions offers far more control while introducing more security risks than CGI applica-

tions. As we will discuss in the following section, ISAPI extensions presented significant

source disclosure risks.

ISAPI filters, instead of being explicitly requested, are explicitly configured for a specific

site. A filter is set up for a specific virtual host and is then executed on every request for

that virtual host. The filter can then transform the incoming and outbound data before it is

processed by other filters or extensions. In addition, filters can perform a number of other

tasks, including:[Microsoft Corporation]

• Control which physical file gets mapped to the URL

• Control the user name and password used with anonymous or basic authentication

• Run processing when a connection with the client is closed
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• Perform special logging or traffic analysis

• Perform custom authentication

While the range of functionality offered through filters is similar to that offered by Apache

HTTP Server’s hooks, Microsoft recommends that “the work performed by ISAPI filters

[be] minimized”[Microsoft Corporation]. This is because every filter is executed on each

request which can introduce substantial invocation overhead if it is not needed on every

request.

Also, as part of the new Worker Process Isolation mode in IIS 6.0, ISAPI Extensions and

Filters are now relegated to the individual process space of the specific application pool.

Since errors in the kernel-mode driver can cause stability problems, it is protected from

any external modifications. Yet, this directly constrains what operations can be performed

by the ISAPI filters. Previously, raw data filters had the ability to access the underlying

connection stream to introduce modifications into the data stream. With the new kernel-

mode code handling the brunt of the protocol interactions, all of this is required to be han-

dled by the http.sys driver directly. Therefore, any applications that require raw data

access must use the lower-security IIS 5.0 isolation mode and bypass the HTTP kernel

driver.

External Extensibility. IIS 3.0 introduced Active Server Pages (ASP) and is classified as

a server-side scripting language. As discussed before, the implementation of ASPs in IIS

are handled by an ISAPI extension. Numerous security issues discovered with IIS over the

years permitted the source code of these ASPs to be disclosed through bypassing these

extensions. This presented a number of security risks as sensitive information (such as

database usernames and passwords) were often stored inside the ASP files under the

assumption that the client would never see the source behind these ASP files. Eventually,
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most ASP content developers began to understand that various vulnerabilities would occur

which would disclose the source of their files and consequently limited the amount of sen-

sitive information in the ASP files themselves.

While IIS 6.0 retains support for ASPs, CGIs, WebDAV, and other server-side technolo-

gies, they must now be explicitly enabled by the site administrator. Only static content will

be served by default. This action is now required “to help minimize the attack surface of

the server.”[Microsoft Corporation] Any requests to these inactive services, even if they

are otherwise installed, will result in an HTTP error being returned to the user.

Lessons Learned. Lack of separation in run-time architecture presented serious security

risks; Installing and activating unnecessary components by default can be dangerous;

Security constraints can restrict range of functionality that can be provided.

1.9. User Agents
Fielding defines a user agent as:

Table 1.6: REST Architectural Constraints: IIS

Constraint Imposed Behavior

Representation 
Metadata

Request: Fetch request header with ‘:’
Response: Add headers with manual delimiting[Microsoft 
Corporation, 2004]

Extensible Methods HTTP processing by the kernel prevents this with IIS 6.0

Resource/
Representation

Extensions Response object not clearly defined

Internal
Transformation

Filters are defined for an entire site
IIS 6.0 further reduces filter flexibility for security

Proxy None

Statefulness ASP session information hides state from ISAPI modules

Cacheability Added in IIS 6.0
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A user agent uses a client connector to initiate a request and becomes the ultimate 

recipient of the response. The most common example is a Web browser, which 

provides access to information services and renders service responses according to 

the application needs.[Fielding, 2000, 5.2.3]

Grosskurth and Godfrey used automated architectural recovery processes to define a refer-

ence architecture for web browsers depicted as Figure 1.8 on page 41[Grosskurth, 2005].

Besides producing a reference architecture, they also presented a timeline that covers the

Figure 1.8: Web Browser Reference Architecture (From [Grosskurth, 2005])

Figure 1.9: Web Browser Timeline (From [Grosskurth, 2005])
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early history of web browsers as depicted in Figure 1.9 on page 41. In an earlier work,

Grosskurth and Echihabi extracted software architectures for several other web brows-

ers[Grosskurth, 2004]. For the web browsers that they extracted an architecture for and are

discussed here, we will present their architecture diagrams as well. However, it should be

noted that these architectural diagrams are relatively high-level and tell us little about the

behavior of the system along the prism dimensions we introduced earlier.

1.9.1. Mosaic And Descendants
The migration from text-based browsers to graphical browsers allowed the content on the

World Wide Web to evolve from hypertext to hypermedia. One of the earliest successful

graphical web browsers was NCSA Mosaic which started development in 1993[National

Center for Supercomputing Applications, 2002]. Like httpd, Mosaic was developed at the

National Center for Supercomputing Applications (NCSA) at the University of Illinois at

Urbana-Champaign. The ability to render images, and hence, richer documents, over the

World Wide Web was critical in facilitating an explosive growth in web traffic[Kwan,

1995].

MOSAIC ARCHITECTURE
Compared to web browsers today, Mosaic was highly restricted as to what content it could

render internally. Mosaic was initially restricted to supporting only the HyperText Markup

Language (HTML), the Graphics Interchange Format (GIF) format, and the XPixMap

image format (XPM).

Portability. There were several versions of Mosaic that were distributed by NCSA: ones

for Windows, Macintosh and the various Unix platforms. While they shared the same
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brand name, they did not share a common architecture. Each one was written indepen-

dently and had separate release cycles. By far the most popular version during this time

was Mosaic for X Windows (X Windows being the standard windowing system on Unix

platforms). Therefore, we will restrict the following architecture discussions to Mosaic for

X Windows.

Run-time architecture. Since Mosaic was an X Windows program, its architecture fol-

lowed the constraints of X: a single process generated and responded to user events. New

windows could be created which would request a URL and render the response within the

window. Mosaic did support other protocols, including FTP and Gopher, that could be

accessed through the URL syntax.

External Extensibility. In each HTTP response, there is usually an associated metadata

field called Content-type. The presence of this metadata allowed programs such as Mosaic

to determine how to best render the received representation. If Mosaic could render the

content-type natively (such as for HTML, GIF, or XPM), it would display the content

inside of the browser window. However, if it was not one of the types that it supported,

Mosaic relied upon helper applications to render the document.

However, this setup had a significant drawback: these helper applications were truly exter-

nal to Mosaic[Schatz, 1994]. Mosaic would download the representation locally to disk

and pass the local file information to the specified application. The viewer would then

execute independently and render the content separately in its own window space. Thus, a

critical aspect of hypermedia was lost: all navigation capabilities stopped once the helper

application was launched.
43



Internal Extensibility and Integration. To help address the loss of navigation through

unknown media types, an experimental Common Client Interface (CCI) was first released

with Mosaic 2.5 for X Windows in late 1995[National Center for Supercomputing Appli-

cations, 1995][Schatz, 1994]. By this time, most of the original Mosaic development team

had left to start Netscape, which among other competitors, started their own internal

extensibility efforts. There were also serious inherent security problems with CCI - any

incoming connection to the CCI TCP port would allow the user to control the browser

without any authentication. Therefore, there was little practical adoption of CCI.

CCI allowed for external applications to send instructions to Mosaic: such as navigating to

a particular page. One such CCI-enabled application was X Web Teach which allowed a

teacher to browse websites with student Mosaic instances automatically navigating to the

same sites.[Braverman, 1994] Other work with CCI would allow control of the user inter-

face within Mosaic[Newmarch, 1995]. Notably, CCI did not allow for drawing of

unknown media types within the Mosaic windows.

Table 1.7: REST Architectural Constraints: Mosaic

Constraint Imposed Behavior

Representation 
Metadata

None

Extensible Methods No

Resource/
Representation

Content went straight from parser to user’s window

Internal
Transformation

External viewers only

Proxy Can pass requests to a proxy

Statefulness No state management issues

Cacheability Partially: some features didn’t work ‘right’ with the cache
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Lessons Learned. Internal rendering of types facilitate hypermedia, but the lack of tight

integration for unknown media types present a difficulty in persisting the hypermedia

experience.

EARLY NETSCAPE NAVIGATOR ARCHITECTURE
Even though little code was shared between NCSA Mosaic and the new Netscape Naviga-

tor, the key designers behind the two browsers were constant. Similar to what transpired

with NCSA httpd and Apache HTTP Server, a large percentage of the user base quickly

migrated from the depleted NCSA project to a viable competitor - in this case, Netscape

Navigator. There was, however, one notable difference between the server administrator’s

transition to Apache: Netscape, unlike NCSA Mosaic, was only available for a fee. How-

ever, until its competitors became viable alternatives and undercut its prices by giving

their browsers away, Netscape had acquired over an 80% market share by the summer of

1995[Wilson, 2003] It should also be pointed out that the internal codename for Netscape

Navigator was Mozilla - which would ultimately resurface later.

Given a chance to re-examine past architectural decisions based on their Mosaic design

experiences, the team decided to address several issues that were unresolved with NCSA

Mosaic. Among the key architectural changes were the introduction of more current

HTML support, Java applets, JavaScript, Cookies, and the introduction of a client-side

plug-in system to internally incorporate the concept of helper applications.

Portability. Like NCSA Mosaic, Navigator was written in C with versions of Navigator

available for Unix, Macintosh, Windows, and other platforms. During this time, Java

emerged on the scene with its “write once, run anywhere” promises. Navigator was one of
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the first non-Sun browsers to incorporate applet support - which allowed Java applications

to run inside of the browser[Gosling, 1996].

As an object-oriented language with integrated memory management and the promises of

pure portability, the Netscape developers initially found Java an attractive language.[Zaw-

inski, 2000] Therefore, Netscape started the process of rewriting Navigator in Java under

the codename of “Xena” (the press labeled this effort “Javigator”). Jamie Zawinski, one of

the lead Navigator developers, has commented, “I think C is a pretty crummy language. I

would like to write the same kinds of programs in a better language.”[Zawinski, 2000]

Unsurprisingly, however, the promises and reality of Java were far apart: the portability,

efficiency, and confusing mix of concepts caused serious problems. Zawinski eventually

concluded, “I'm back to hacking in C, since it's the still only way to ship portable pro-

grams.”[Zawinski, 2000] Given these technical problems, Netscape management later

cancelled the Java porting effort and only released incomplete portions of the Mail client

under the code name Grendel[Zawinski, 1998].

Internal Extensibility. One of the significant advances introduced with Navigator was

the addition of a plug-in architecture. Developers could now write dynamically-loaded

plugins to handle specific content-types and render them inside of the browser - instead of

requiring an external application. For example, a user who wanted to view a QuickTime

movie inside of their browser only needed to install a QuickTime plug-in for Netscape.

Additionally, if the content type being viewed supported links (such as a movie trailer

pointing to a website for more information), the plug-ins could further the hypermedia

context by directing the browser to fetch that URL. True two-way interaction between the

browser and its plugins was achieved.
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Plug-ins inside of Netscape can perform the following tasks[Oeschger, 2002]:

• draw into a part of a browser window

• receive keyboard and mouse events

• obtain data from the network using URLs

• add hyperlinks or hotspots that link to new URLs

• draw into sections on an HTML page

• communicate with JavaScript/DOM from native code

These plug-ins would be compiled into native code by the developer and distributed to the

users for installation. To maintain backwards compatibility and promote their own adop-

tion rates, most current web browsers still support loading these original Netscape plug-

ins.

External Extensibility. Netscape also introduced a number of ways for content designers

to influence the behavior of the browser above what could be achieved with simple

HTML. The first of these was the introduction of JavaScript[Netscape, 1996]. JavaScript

is a client-side scripting language that allows content developers, through special HTML

tags, to control the behavior of the browser when viewing that specific HTML page. We

will discuss JavaScript more completely in “JavaScript” on page 88.

The other key feature that Netscape Navigator introduced was cookies.[Netscape,

1999][Kristol, 1997] As discussed in Section 3.6 on page 117, cookies are one of the most

pervasive examples of non-RESTfulness on the Web. Cookies allow a server to provide an

opaque token to the client as a meta-data field. The client can then save this cookie and

then present that same opaque token to the same server in any subsequent requests. Since

the server issued the “cookie” in the first place, it can then determine the client that is

making the request. Numerous security implications have been discovered through the

improper use of cookies, but their usage still remains prevalent today.
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Lessons Learned. Attempts at porting the web browser to Java failed; Internal extensibil-

ity greatly enhanced through client-side plugins; external extensibility enhanced with

introduction of JavaScript; Statefulness REST constraints violated with the introduction of

cookies.

NETSCAPE 6.0 / MOZILLA ARCHITECTURE
After the success of Netscape 4 and the failure of their Java rewrite, the developers behind

Netscape decided to rewrite the codebase from scratch. This caused the release of

Netscape 6.0 to be delayed until April 2000. One commentator criticized this deci-

sion[Spolsky, 2000]:

Netscape 6.0 is finally going into its first public beta. There never was a version 

5.0. The last major release, version 4.0, was released almost three years ago. Three 

years is an awfully long time in the Internet world. During this time, Netscape sat 

by, helplessly, as their market share plummeted.

Table 1.8: REST Architectural Constraints: Early Netscape

Constraint Imposed Behavior

Representation 
Metadata

Requests: Metadata represented as content[Oeschger, 2002]
Responses: Content-type is the vector for determining viewer

Extensible Methods Only POST and GET methods were supported

Resource/
Representation

Plug-ins could transform based on representation type

Internal
Transformation

Content could dynamically change through plug-ins

Proxy Can pass requests to a proxy

Statefulness Introduction of Cookies conflicts with REST

Cacheability Yes
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It's a bit smarmy of me to criticize them for waiting so long between releases. They 

didn't do it on purpose, now, did they?

They did it by making the single worst strategic mistake that any software com-

pany can make:

They decided to rewrite the code from scratch.

This period was one of large social turmoil for the project as Netscape was purchased by

America Online and the Mozilla Foundation was started[Markham, 2005]. The codebase

that eventually formed the basis of Netscape 6.0 was first open-sourced under the Mozilla

moniker in 1998. Since the opening of the Mozilla codebase, all subsequent Netscape

releases were derived to some degree from the Mozilla codebase.

Architecture Recovery Process. As part of the TAXFORM project, Godfrey and Lee

reconstructed the software architecture behind Mozilla Milestone 9 through an automated

architectural recovery process[Godfrey, 2000]. Milestone 9 was first released to the public

in August 26, 1999 and represented a web browser, mail client, news reader, and chat

Name Description
Associated 
Subsystems

Associated  
Files

HTMLPres HTML layout engine 47 1401
HTMLParser HTML Parser 8 93
ImageLib Image processing library 5 48
JavaScript JavaScript engine 4 134
Network Networking code 13 142
StdLib System include files (i.e., “.h” files) 12 250
Tools Major subtools (e.g., mail and news 

readers)
47 791

UserInterface User interface code (widgets, etc.) 32 378
Utility Programming utilities (e.g., string 

libraries)
4 60

nsprpub Platform independent layer 5 123
xpcom Cross platform COM-like interface 23 224

Figure 1.10: Mozilla Architecture Breakdown (From [Godfrey, 2000])
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engine in one integrated application[Mozilla Foundation, 2002]. Mozilla’s aim with Mile-

stone 9 was to introduce a new networking layer called Necko[Mozilla Foundation, 2001].

The Mozilla developers justified Necko because “Mozilla’s current networking library is

in a sorry state” and the old layer “was designed for a radically different non-threaded

world.”[Harris, 1999]

Godfrey and Lee’s recovered architecture diagram for Mozilla Milestone 9 is presented in

Figure 1.11 on page 50. A breakdown of Mozilla’s architectural systems is presented

Table 1.10 on page 49. While Godfrey and Lee also provided the number of lines of code

for each architectural division, we exclude that number here.

Portability. At this point in time, the complete Mozilla codebase consisted of over 7,400

source files and over two million lines of code in a combination of C and C++[Godfrey,

2000]. To place the cost of portability in perspective, Godfrey determined that only 20%

of the C files and 60% of the C++ files were actually required to operate on the Linux

operating system. To ease the difficulties associated with the recovery process, Godfrey

therefore eliminated the code that was not required on Linux. Therefore, their analysis did

not consider how 80% of the C code or 40% of the C++ code fit into rest of the overall

Figure 1.11: Mozilla Milestone 9 Architecture (From [Godfrey, 2000])
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architecture. We believe that removing these codes understated the true impact of portabil-

ity for Mozilla.

Analysis of Mozilla’s Architecture. Godfrey summarized their architectural observations

about Mozilla that “either its architecture has decayed significantly in its relatively short

lifetime, or it was not carefully architected in the first place”[Godfrey, 2000]. As can be

seen in the figure, the recovered architecture indicates a “near-complete graph in terms of

the dependencies between the different [Mozilla] subsystems.” Their recovered architec-

ture indicated a dependency upon the network layer by the image processing layer. They

concluded that “the architectural coherence of Mozilla to be significantly worse than that

of other large open source systems whose software architectures we have examined in

detail.”

It is compelling to compare this rather harsh architectural assessment with that of Brendan

Eich, one of the Netscape developers and co-founders of the Mozilla project, who

remarked in November, 2005[Eich, 2005]:

Some paths were long, for instance the reset in late 1998 around Gecko, XPCOM, 

and... XPFE. This was a mistake in commercial software terms, but it was inevita-

ble given Netscape management politics of the time, and more to the point, it was 

necessary for Mozilla's long-term success. By resetting around Gecko, we opened 

up vast new territory in the codebase and the project for newcomers to homestead.

Godfrey and Lee used an underlying codebase for the architectural recovery which

included these precise modifications that Eich credits for Mozilla’s “long-term success.”

Therefore, we must question either the validity of the developer’s informal assessment or

the faithfulness of reconstructed architecture. This leads to an interesting line of question-
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ing: Were these changes really in the codebase and detectable by the fact extractors? If

they were present, did they have any measurable architectural impact at this point in time?

If the architectural coherence is “significantly worse” than comparable systems, what does

this indicate for the future? Given the conflicting nature of the architectural assessments, it

is imperative to continue to trace the evolution of the Mozilla codebase with an eye

towards its architecture.

Lessons Learned. Need for complete architectural rewrite due to decay allowed competi-

tors to overtake it in the market; challenges in understanding recovered software architec-

ture in context of evolving systems.

Figure 1.12: Mozilla Concrete Architecture - circa 2004 (From [Grosskurth, 2004])
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CURRENT MOZILLA ARCHITECTURE
In 2004, Grosskurth and Echihabi returned to Mozilla to assess the architecture’s prog-

ress[Grosskurth, 2004]. By this time, Mozilla had launched a spin-off product called Fire-

fox. Firefox differed from Mozilla in that only delivered web browsing functionality

without any mail-reading functionality. Most of the resulting discussion of the current

Mozilla architecture applies to Firefox as well.

Grosskurth and Echihabi’s resulting concrete architecture is presented in Figure 1.12 on

page 52. They also fit this recovered Mozilla architecture into a reference architecture for

Figure 1.13: Mozilla Architecture (From [Grosskurth, 2004] Figure 8)

Figure 1.14: Mozilla Architecture (From [McFarlane, 2003])
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web browsers as presented in Figure 1.13 on page 53. Finally, we present an architecture

diagram created by a manual process and was presented as part of a book on developing

applications with Mozilla in Figure 1.14 on page 53[McFarlane, 2003].

Grosskurth’s architectural recovery techniques were similar in nature to the analysis con-

ducted by Godfrey and Lee in 2000. Therefore, the two sets of resulting architectures can

be compared with relative ease. Even though the code size did not increase substantially,

the striking difference between the two architectural snapshots is that the complex graph

of intra-module dependencies has now been eliminated. The cyclical dependencies that

caused Godfrey and Lee to label Mozilla as an exemplar of architectural decay is no lon-

ger.

Grosskurth and Echihabi also termed the Mozilla architecture as a modified pipe-and-fil-

ter system. However, we believe that this is an over-simplistic classification of Mozilla’s

architecture. Features of Mozilla’s architecture, specifically the networking layer, do

indeed exhibit the characteristics of a pipe-and-filter system[Saksena, 2001]. However, the

higher-level portions of Mozilla, which include the renderer and interfaces, have charac-

teristics closer to an event-driven architecture than a pipe-and-filter architecture.[Larsson,

1999]

Internal Extensibility. One of the defining characteristics of this new architectural model

is the breakdown of components via Cross Platform Component Object Model

(XPCOM)[Turner, 2003]. While XPCOM’s design is inspired by Microsoft’s COM sys-

tem, XPCOM only operates within the Mozilla architecture rather than across an operating

system[Parrish, 2001]. Building upon XPCOM with user interface extensions like

XPFE[Trudelle, 1999], Mozilla now offers third-parties the ability to customize all facets
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of the system dynamically. This has created a wealth of third-party extensions that modify

Mozilla’s behavior in a variety of mechanisms. New protocols can also be added through

XPCOM[Rosenberg, 2004].

Even with this new model, Mozilla still supports Netscape plug-ins. Yet, there is also a

hidden cost for backwards-compatibility inside the Mozilla architecture for this support.

The previous Unix-based plug-ins were based on the Motif Xt library, while new plug-ins

are built on top of the GTK+ library[Grosskurth, 2004]. Therefore, run-time emulation is

performed with these legacy modules by dynamically translating Motif calls to GTK+.

Portability. Like all of its architectural predecessors, Mozilla is still written in C and C++.

However, JavaScript has been introduced as a critical part of Mozilla: almost all Mozilla

extensions can now be written in JavaScript via XPCOM[Bandhauer, 1999]. Therefore,

extension developers no longer need to write their extensions in C, but instead can access

the full flexibility of Mozilla’s interfaces through XPCOM and JavaScript.

Additionally, Mozilla has built up the Netscape Portability Runtime (NSPR)[Mozilla

Foundation, 2000]. This layer abstracts all of the non-user-interface differences between

the different platforms that Mozilla supports. It should be noted that when developing

Apache HTTP Server 2.0, the Apache developers approached the Mozilla developers

about using NSPR for their base portability layer as well. However, licensing differences

between these groups caused the construction of the Apache Portable Runtime compo-

nents which is now used by Apache HTTP Server and several other projects.

Integration. Through the Gecko engine, other applications can import the functionality of

Mozilla into their own applications[Evans, 2002]. Gecko is described as:
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the browser engine, networking, parsers, content models, chrome and the other 

technologies that Mozilla and other applications are built from. In other words, all 

the stuff which is not application specific.[Mozilla Foundation, 2004]

While applications embedding Gecko have a fine-grained behavior over browsing, it is

rather inflexible in its approach in that it forces the application to fit the mold of a web

browser[Lock, 2002]. Therefore, Gecko-derived applications tend to be variants on

Mozilla but are not functionally much different than Mozilla.

Lessons Learned. Significant effort to clean up architecture; Internal extensibility pro-

vided via JavaScript and C++; distinct rendering engine permits integration by third par-

ties but isn’t sufficiently powerful to permit different kinds of applications

1.9.2. Microsoft Internet Explorer
Microsoft’s Internet Explorer can trace its lineage back to the NCSA Mosaic codebase. To

bootstrap their delivery of a web browser, Microsoft initially licensed the code for a web

Table 1.9: REST Architectural Constraints: Mozilla and Firefox

Constraint Imposed Behavior

Representation 
Metadata

Visitor pattern on nsIHttpChannel object allows examination 
of metadata for requests and responses

Extensible Methods Yes

Resource/
Representation

Extensions can now operate on more than just Content-Type

Internal
Transformation

Changes can occur even without embed tags

Proxy Can pass requests to a proxy

Statefulness Cache can now handle multiple representations over time 
which alleviates the negative stateful impact of Cookies

Cacheability Yes
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browser from a company called Spyglass. Spyglass, in turn, was the commercial variant of

NCSA Mosaic for Windows-based platforms. However, in the years since the first release

of Internet Explorer, the corresponding code base and architecture greatly evolved to the

point where it now has little architectural similarity with the original Mosaic architecture.

After Internet Explorer 6 was released, Microsoft disbanded the IE development team.

Around this same time, a slew of security vulnerabilities were discovered that presented

extreme risks to their users. Besides limiting the responsiveness to security reports, this

absence in the market also led to an opening for other competitors to innovate. Given these

criticisms and advances made by competitors, Microsoft has recently reformed the Inter-

net Explorer team to focus on a new release of Internet Explorer 7 set to coincide with the

next major Windows release of Windows Vista currently slated for late 2006. One of the

stated goals of this new version is to revamp Internet Explorer’s architectural approach to

better support security. Therefore, we will examine the current state of the Internet

Explorer architecture and look towards the architecture that has been disclosed for the

upcoming Internet Explorer 7.

INTERNET EXPLORER ARCHITECTURE
Due to Internet Explorer’s closed-source nature, the lack of access to source code presents

a difficulty to recover a detailed and accurate software architecture representation. How-

ever, we can rely upon publicly available architectural information made available by

Microsoft. One such source, presented in Figure 1.15 on page 58, is a public architectural

description of Microsoft Internet Explorer for Windows CE available on the Microsoft

Developer Network (MSDN) website.[Microsoft Corporation, 2005] Another source for

architectural information about Internet Explorer is contained within recent presentations
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given by Microsoft’s Internet Explorer development team discussing the impact of secu-

rity on IE’s architecture.[Chor, 2005] This particular architectural representation of Inter-

net Explorer is reproduced in Figure 1.16 on page 58.

Figure 1.15: Microsoft Internet Explorer for Windows CE (From [Microsoft 
Corporation, 2005])

Figure 1.16: Microsoft Internet Explorer Architecture (Adapted from [Chor, 2005])
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Portability. Besides the ubiquitous Windows versions, there have been versions of Inter-

net Explorer released on a variety of non-Microsoft operating systems, including Mac OS,

Solaris, HP-UX, and a variety of handheld devices. However, as alternatives emerged,

these non-Windows platforms have quietly had their support dropped in recent

years[Microsoft Corporation, 2005]. Additionally, the code base behind these versions of

Internet Explorer was often independent of the code base for the main Windows-based

version. Therefore, while the Internet Explorer brand name was shared across implemen-

tations, behind the scenes, there was usually little in common. For our purposes, we will

only consider the Windows-based architectures of Internet Explorer.

Internal Extensibility. With Internet Explorer 4.0, Microsoft introduced a set of Power-

Toys that allowed developers to produce extensions to Internet Explorer. These extensions

were contained in an HTML file which Internet Explorer would execute to alter its behav-

ior. Example modifications that were supported was controlling the zoom factor of an

image, listing all of the links on a page, and displaying information about the current

page.[Microsoft Corporation]

In Internet Explorer 5.0, this functionality was broadened to allow modification by COM

objects and events[BowmanSoft, 2001]. At the same time, the feature set was renamed to

Web Accessories. One facet of modification was through “bands” which dedicate a region

of the Internet Explorer window to a third-party extension[Microsoft Corporation]. These

bands can display any desired information in this region through any programming lan-

guage that supports COM objects and events. New download managers, toolbar buttons,

and menu items can be added through Web Accessories[Microsoft Corporation]
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However, Web Accessories only have access to relatively high-level and coarse-grained

user-centric events. A plug-in that wishes to examine the complete HTTP headers for a

response must install a custom proxy. This proxy must then interface with the WinInet

layer to capture the HTTP stream and relay it externally to the Web Accessory plug-in. An

example of such a system, Fiddler, is provided by Microsoft[Lawrence, 2005].

Through the URLmon component, developers can also register an asynchronous plugga-

ble protocol to register a new protocol or MIME filter[Microsoft Corporation]. When a

resource is requested, Internet Explorer will use the provided URL scheme (such as http or

ftp) to look up which module defines the protocol interactions. The request is then handed

off and the module initiates the proper protocol. Besides raw protocols, filters can be reg-

istered that will be invoked whenever a representation’s mime-type matches, which allows

for custom internal transformations of the representation before the user will see the result.

Integration. Through a COM object called WebBrowser, any Windows application can

import the functionality of Internet Explorer[Microsoft Corporation]. All of the browsing

and parsing functionality is then handled internally by Internet Explorer. Additional cus-

tomizations can be introduced through Browser Helper Objects, which allow a developer

to customize the look and feel of the browser[Esposito, 1999].

External Extensibility and Run-time Architecture. The run-time architecture of Inter-

net Explorer is presented in Figure 1.16 on page 58. The external extensibility items that

are supported are in the “page rendering” layer via the MSHTML components. In addition

to the other mechanisms (such as JavaScript through the Script Engine component) that IE

supports, the key addition with IE is support for ActiveX controls.[Microsoft Corporation]

Internet Explorer can act as a container for these COM objects and content developers can
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request their inclusion through special HTML tags.   When requested and if it is installed

on the client machine, an ActiveX control will appear as part of the returned page. It

should be noted that until Internet Explorer 6.0, ActiveX controls would automatically be

downloaded and installed without asking permission from the user[Microsoft Corporation,

2004]. This presented serious security risks.

These security concerns with ActiveX arise from the fact that these controls can perform

any action on the computer that the current user can perform.[Microsoft Corporation] One

defensive mechanism that was introduced is that a control developer can mark a control as

“safe for scripting.” If an ActiveX control isn’t marked as safe for scripting, it can not be

executed by Internet Explorer. Unfortunately, most developers do not have enough knowl-

edge about when to mark a control as safe for scripting or not. Microsoft themselves

allowed Internet Explorer to be scripted by external sites until IE 6.0[Microsoft Corpora-

tion]. Even with these opt-in measures available, as we will discuss next with Internet

Explorer 7, the lack of privilege separation in Internet Explorer 6 and earlier still present

significant opportunities for malicious attacks that can compromise the system.

INTERNET EXPLORER 7 ARCHITECTURE
Faced with the deluge of security vulnerabilities, Microsoft has embarked on a rewrite of

Internet Explorer focused on introducing a security-centric architecture to the next release

of Internet Explorer to be shipped with the upcoming Windows Vista release currently

expected in the second half of 2006.

Internet Explorer’s current Group Program Manager, Tony Chor, admits that “compatibil-

ity and features trumped security” in previous versions of Internet Explorer[Chor, 2005].

The main problems identified were that various architectural flaws and deficiencies com-
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bined to lead to the poor security measures of Internet Explorer. Among those identified

was that Internet Explorer led users to be confused about the impact of certain choices,

architectural vulnerabilities were exposed allowing malicious code to be installed, and

attacks on the extensibility features present in Internet Explorer. To rectify this situation

going forward, this new version introduces a revised architectural model aimed at improv-

ing the security characteristics of IE.

The core of Internet Explorer 7’s redesigned architecture will rely upon a new feature in

Windows Vista called user account protection (UAP). This new operating system feature

segregates the normal day-to-day operation of the user with the administrative functions.

This divide prevents a process from being able to perform malicious activities without

explicit authorization. Microsoft claims that “the goal of UAP is to enable the use of the

Windows security architecture as originally designed in Microsoft Windows NT 3.1 to

protect the system so that the these [threat] scenarios are blocked.”[Microsoft Corpora-

tion, 2005]

IE7 will now run at this lower “privilege mode.” This implies that the IE process will be

prevented from writing outside a set of specified directories or communicating with other

higher-privilege processes[Silbey, 2005] If a requested operation (such as saving a file)

would violate the privilege, the new Windows Vista system will provide the user with the

ability to block the operation from completing or explicitly allow the operation. Certain

high-risk sequences, such as installing an ActiveX control, will require administrator

rights.

In order to maintain compatibility with previous extensions, the exposed ActiveX inter-

faces will remain the same. However, any commands that require additional privileges
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will be stopped and explicit authorization will be requested along with a description of the

command that is being attempted.

Lessons Learned. Again, a lack of separation in run-time architecture presented serious

security risks; portability strategies mandating independent implementations for each plat-

form may lead to maintenance concerns that force eventual product withdrawal; appropri-

ately combining with operating system security capabilities can improve overall security.

1.9.3. Konqueror
Konqueror from the K Desktop Environment project (KDE) is one of the few user agents

that can not trace its heritage to the NCSA Mosaic codebase. Instead, Konqueror evolved

from the file manager for the KDE environment. The Konqueror name itself is a subtle

reference to the other browsers. The KDE developers explain it thusly:

After the Navigator and the Explorer comes the Conqueror; it's spelled with a K to 

show that it's part of KDE. The name change also moves away from “kfm” (the 

Table 1.10: REST Architectural Constraints: Internet Explorer

Constraint Imposed Behavior

Representation 
Metadata

Event triggered before navigation to view outbound headers
If want to view headers, use a separate proxy server

Extensible Methods No

Resource/
Representation

Extensions can only operate on content-type

Internal
Transformation

MIME filters can be registered as protocol handlers

Proxy Security zones allows proxy requests on a zone basis

Statefulness Limited control over cache for state considerations

Cacheability Yes
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KDE file manager, Konqueror's predecessor) which represented only file manage-

ment.[KDE e.V., 2005]

Konqueror’s architecture, as extracted by Grosskurth and Echihabi, is presented in

Figure 1.17 on page 64.

Portability. All KDE components are written in C++ with window management duties

delegated to the QT library. Befitting Konqueror’s heritage as the file manager on the

KDE desktop, it is an intrinsic part of the KDE environment and relies heavily upon the

services provided by other KDE components. Therefore, Konqueror can not truly be

viewed as a stand-alone application, but rather as a fundamental part of a desktop environ-

ment. This limits the portability of Konqueror in that it will operate on any system that

supports KDE, but due to the large dependency chain, the Konqueror application as a

whole can not easily be considered separately from KDE.

Run-time architecture and External Extensibility. The application called Konqueror is

just a relatively thin layer on top of other KDE components. One of Konqueror’s main

dependencies is upon the khtml engine which handles the rendering of any returned repre-

Figure 1.17: Konqueror Architecture (From [Grosskurth, 2004] Figure 12)
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sentation (such as for HTML, JavaScript, and CSS). Through a Konqueror plugin and

operating system emulation, Konqueror can also support ActiveX controls.[KDE e.V.,

2001] khtml is also responsible for directly interfacing with the networking layer (kio) -

therefore, the Konqueror application never directly interfaces with the networking layer.

As we will discuss later with Safari, khtml represents the most important functional com-

ponent of Konqueror.

Internal Extensibility. Konqueror’s main extensibility mechanism is through KDE’s

KParts component framework[Faure, 2000]. Through KParts, a developer can render

media elements inside the Konqueror window[Granroth, 2000]. However, KParts only

really supports embedding of an application inside of a Konqueror window. KParts does

not specifically permit a developer to alter the look and feel of the Konqueror application.

If extensions to the underlying protocol are desired, new protocols can be added through

KDE’s networking layer. All protocols that are supported by Konqueror are handled

through ioslaves. The KDE input/output layer understands the concepts of URLs and can

delegate protocol handling to registered modules. However, there is no mechanism to

extend a specific URL handler - therefore, any extensions to a protocol would have to be

handled through a completely separate kioslave mechanism.

Table 1.11: REST Architectural Constraints: Konqueror

Constraint Imposed Behavior

Representation 
Metadata

Konqueror itself does not have access to any metadata
KHTML and kio do to varying extents

Extensible Methods New URL scheme would be required

Resource/
Representation

KHTML modifications based upon content-type
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Lessons Learned. Evolution from a different application; tight integration with other lay-

ers of platform offers compartmentalization, but it blurs the distinction between an appli-

cation and the platform it is on top of.

1.9.4. Safari
In 2003, Apple announced the Safari Web Browser for their Macintosh OS X platform.

Until this time, the prevailing browser on Mac OS X was Microsoft’s Internet Explorer for

Macintosh. In the words of one expert on CSS, with Internet Explorer for Macintosh, “the

port (of Internet Explorer) to OS X has gone horribly wrong, and I've written 5.2

Internal
Transformation

kio layer has concept of filter transformations

Proxy Can pass requests through the kio layer

Statefulness Explicit state support

Cacheability Yes, handled by the KHTML and kio layer

Figure 1.18: Safari Architecture (From [Grosskurth, 2004] Figure 14)

Table 1.11: REST Architectural Constraints: Konqueror

Constraint Imposed Behavior
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off.”[Koch, 2004]. Therefore, Apple decided to produce their own browser; but instead of

writing the browser from scratch, they decided to examine other alternatives.

Run-time architecture. As seen in Safari’s architecture, as extracted by Grosskurth and

Echihabi and presented in Figure 1.18 on page 66, Safari is based upon Konqueror’s

KHTML rendering engine and KJS JavaScript engine. Apple’s development manager

explained their choice to the KDE community as follows:

The number one goal for developing Safari was to create the fastest web browser 

on Mac OS X. When we were evaluating technologies over a year ago, KHTML 

and KJS stood out. Not only were they the basis of an excellent modern and stan-

dards compliant web browser, they were also less than 140,000 lines of code. The 

size of your code and ease of development within that code made it a better choice 

for us than other open source projects. Your clean design was also a plus. And the 

small size of your code is a significant reason for our winning startup perfor-

mance.[Melton, 2003]

Since a number of developers on Apple’s Safari team had previously worked for Netscape

on Mozilla, the implied questions that quickly arose focused on why Apple did not choose

Mozilla for their engine instead. Many viewed this as an attack on Mozilla[Festa, 2003]. A

Mozilla contributor, Christopher Blizzard, dismissed those claims as follows:

First of all, I don't think that we should be having the Safari vs. Mozilla/Chimera 

discussion at all. It takes our eyes off of the real prize (Internet Explorer) and that 

which we all should be worried about. I mean, if you control the browser, you con-

trol the Internet. It sounds kooky, but it's true. When we squabble amongst our-

selves it doesn't do us any good.
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That being said, I do have a few things to say about the fact that Apple is going this 

alone. First, it's great that they decided to choose an open source solution, even if it 

isn't Mozilla. If they manage to engage the KHTML community and get well inte-

grated with them then they have the chance to enjoy the fruits of that relationship, 

like as we have with the Mozilla project...

Now, is our layout engine huge and ungainly and hard to understand? Yes. Yes it 

is. And, at least to some degree it's important to understand that Mozilla's layout 

engine has warts because the web has warts. It's an imperfect place and that leads 

to imperfect code. Remember that while KHTML is a good bit smaller than our 

layout engine, it also doesn't render a lot of sites anywhere near as well as Mozilla 

does. Over time, they are going to have to add many of the same warts to KHTML 

as we have to our layout engine. They might be able to do so in a more clean way, 

but they will still be there.[Blizzard, 2003]

Portability. Safari extracted the KHTML and KJS code from KDE and used that as the

base rendering engines for their web browser. The main consequence of this is that the

rendering characteristics of Safari and Konqueror are largely the same because they use

the same rendering components. However, this extraction did not change the implementa-

tion language of the KDE components (which was originally in C++), therefore Safari

relies upon a wide mix of programming languages to achieve its tasks: ranging from C,

C++, Objective-C, and Objective-C++.

All of the code in KHTML that depends on the KDE component foundation had to be

changed to work on Mac OS X’s foundation instead. For example, all of the windowing

primitives based on QT in KHTML had to be adapted to Mac OS X’s Cocoa interfaces.
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According to one Mozilla developer, Safari “also took one of the most complex and effort-

intensive parts of Gecko (Mozilla’s rendering engine), the view manager, to add to

KHTML, because Gecko's worked so well.”[Shaver, 2003][Baker, 2003]

Internal Extensibility. Safari supports two kinds of extensibility mechanisms: Netscape-

compatible plug-ins and WebKit[Apple Computer Inc., 2005]. To ease the transition for

prospective users and developers, plug-ins designed against the Netscape plug-in interface

will work with Safari without any source modification. The end-user only needs to receive

a Mac OS X-compiled version of the Netscape plug-in from the developer. Recent ver-

sions of Safari also offer custom extensions to the Netscape plug-in architecture to support

scripting functions[Apple Computer Inc., 2005]

On top of support for Netscape plug-ins, Safari also offers a set of extensions in Objective-

C called WebKit[Apple Computer Inc., 2005][Apple Computer Inc., 2005]. Extensions

written for WebKit allows use of Apple’s bundled development tools for easy construc-

tion.[Apple Computer Inc., 2005] Since most of Apple’s Mac OS X extensions are already

written in Objective C, the learning curve for the WebKit framework is not high for devel-

opers who are already familiar with Apple’s extension frameworks. Therefore, WebKit’s

target audience is squarely those who are already familiar with Apple’s frameworks not

those who are interested in just the web browsing functionality.

Integration. By leveraging the WebKit interface, applications on Mac OS X can reuse the

services provided by Safari. Dashboard, a new widget system introduced in Mac OS X

10.4, uses the WebKit engine for retrieving dynamic content and rendering the items on

the user’s screen.[Apple Computer Inc., 2005] Contrary to statements which have stated

otherwise, the iTunes player on Mac OS X does not use WebKit.[Hyatt, 2004] Since Web-
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Kit would not likely be available on other platforms due to its extreme dependency on

Mac OS X services, this would preclude iTunes from using WebKit because a major plat-

form target for iTunes is Windows.

Lessons Learned. Possible to take generic, portable code and make it optimized for only

one platform; OS’s native framework system allows any application to integrate a web

browser; applications that use WebKit only work on that OS though.

1.10.Libraries and Frameworks
The origin servers and user agents we have examined so far provide a complete usable

system aimed at either content providers and interested end-users. However, not all REST-

ful applications fit the mold of an HTTP server or web browser. Some applications which

take part of the RESTful part follow a completely different interaction paradigm. To serve

these needs, a collection of RESTful frameworks have emerged to provide the structural

Table 1.12: REST Architectural Constraints: Safari

Constraint Imposed Behavior

Representation 
Metadata

Dictionary of all header fields for HTTP objects

Extensible Methods Like KDE, new URL schemes required to extend methods

Resource/
Representation

Response and Request have defined objects

Internal
Transformation

Modifications of returned HTML content through DOM

Proxy Can pass requests to a proxy

Statefulness Each application can define a policy for accepting cookies

Cacheability Yes, on a per-application basis
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necessities for these applications. Again, we will limit ourselves to the criteria presented

in “Selecting Appropriate REST-based Applications” on page 14.

One notable characteristic of this classification of systems is that most of the systems

described here do not provide support for external extensibility mechanisms. Interpreta-

tion of HTML, JavaScript, and CSS are typically associated with the role of web browsers.

Therefore, developers looking to integrate web browsing into their application will tend to

integrate one of the user agent architectures instead of using one of these frameworks.

1.10.1.libwww
Having been around in some form since 1992, one of the oldest frameworks for designing

and constructing HTTP applications is libwww1 [Aas, 2004][Fielding, 1998][Kahan,

2003]. libwww has been used to design and develop a variety of HTTP client applications,

such as the Amaya web browser [Vatton, 2004]. 

Portability and Run-time Architecture. libwww is written in C and has been explicitly

ported to Unix, Windows, and Macintosh platforms. However, there is no portability layer

- so all developers using libwww must explicitly handle platform differences themselves.

While not directly supporting threads, libwww is built upon an event loop model[Nielsen,

1999]. An application can register its own event loop that will be called whenever an event

is triggered. Through this event loop and non-blocking networking performance, libwww

can handle multiple connections simultaneously.

Internal Extensibility. There have been conflicting descriptions about the underlying

architecture of libwww. One popular description of the architecture of W3C’s libwww can

1. This name is shared by at least two unrelated libraries; we refer to the W3C’s C-based libwww.
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be found in Chapter 7 of Bass [Bass, 1998]. Here, the architecture of libwww is divided

into five layers: application, access, stream, core, and generic utilities. They also claim

that libwww can be utilized to construct both server and client-side HTTP applications.

Finally, they present the following lessons that can be learned from libwww: 1) Formal-

ized APIs are required; 2) A layered architectural style must be adopted; 3) An open-

ended set of features must be supported; 4) Applications should be thread-safe.

However, the original designers of libwww have presented their architecture as a “Coke

Machine” architecture [Frystyk Nielsen, 1999]. This view of the architecture provides

designers with a wide range of functionality, in no particular ordering, that can be used to

construct a RESTful application. Furthermore, while libwww could theoretically be used

to write server applications, the stated intent is for W3C’s libwww to be a “highly modu-

lar, general-purpose client side Web API written in C.” [Kahan, 2003] Hence, the express

focus of libwww is therefore on helping to develop HTTP clients not servers. The initial

positioning as an HTTP client framework introduces fundamental assumptions throughout

the framework that raise serious challenges when designing applications with libwww for

other REST connector types.

Table 1.13: REST Architectural Constraints: libwww

Constraint Imposed Behavior

Representation 
Metadata

Restricted set of headers that can be set or fetched

Extensible Methods Yes

Resource/
Representation

Separate request and response structures

Internal
Transformation

Filter mechanisms to morph content with chaining

Proxy Can pass requests to a proxy
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Lessons Learned. Providing a framework that is not inherently coupled to a web browser

is feasible; however, interface is too limited to use it for any other REST node.

1.10.2.cURL
cURL (“client for URLs”) is an open-source project focused on facilitating the retrieval or

transmission of content with a wide range of protocols through URLs[Stenberg, 2006].

Two sub-projects are distributed as part of Project cURL: libcurl, a C library, and curl, a

command-line program built on top of libcurl. Since the curl command-line program is a

thin wrapper on top of libcurl, we will focus principally on the attributes of libcurl. libcurl

provides support for a number of protocols, including FTP, HTTP, TELNET, and LDAP

and is available on most currently available operating systems.

As of this writing, the main author behind cURL is currently embarking on a ‘high perfor-

mance’ version of cURL, called hiper, that will add HTTP Pipelining and a greater degree

of parallelism [Stenberg, 2005].

Portability. libcurl is written in C and has been ported to almost all modern operating sys-

tems today. Additionally, libcurl also has a number of bindings to over 30 different lan-

guages available (such as Java, Python, Perl, Lisp, and Visual Basic). Therefore, a

developer can leverage libcurl in their preferred programing language. This process is

helped by the fact that almost all programming languages provide some mechanism for

interacting with C libraries. However, these bindings are not uniform in the functionality

Statefulness Cookies can be handled through extension mechanisms

Cacheability Yes

Table 1.13: REST Architectural Constraints: libwww

Constraint Imposed Behavior
73



provided. Each language binding provides a range of libcurl’s functionality. Some of these

bindings export only the minimal functionality of libcurl (such as the easy interfaces),

while other bindings provide the complete functionality of libcurl to that particular lan-

guage.

Run-time Architecture. libcurl offers two interfaces for developers: an easy interface and

the multi interface. With the easy interface, a developer can simply provide a URL and the

response will be emitted to the end-user’s screen by default. With the multi interface, a

number of requests can be handled simultaneously by libcurl. However, the libcurl design

specifically requires that any application using the multi interface manage any threads and

network connections independently. Therefore, if a developer wishes to multiplex across

different connections in a threading environment, they must manage the asynchronous

communication without libcurl’s assistance. This greatly increases the burden on develop-

ers attempting to use libcurl; therefore, most libcurl extensions tend to shy away from the

multi interface.

Internal Extensibility. A developer can extend the functionality of libcurl through the use

of options. These options are in the form of key-value pairs that are set by the application

before the communication process with the server begins. At specific well-defined points

in time, libcurl will examine its options to determine if and how its behavior should be

altered. For example, a callback function can be provided that will be invoked whenever

libcurl wants to write the response to a request. By default, libcurl will write to the user’s

screen; by replacing that option with a callback to a developer-defined function, the appli-

cation can process the response in memory or other tasks as desired.
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Importability. The main application that uses libcurl is the curl command-line client

itself. curl provides users with the ability to transfer files through URLs and supports all of

the underlying protocols that libcurl supports. A selection of applications that use libcurl

include[Stenberg, 2006]:

• clamav - a GPL anti-virus toolkit for UNIX

• git - Linux source code repository tool

• gnupg - Complete and free replacement for PGP

• libmsn - C++ library for Microsoft's MSN Messenger service

• OpenOffice - a multi-platform and multilingual office suite

None of these applications would be viewed as traditional RESTful applications like a

web server or browser, but each of them incorporates RESTful functionality through lib-

curl.

Lessons Learned. Truly different applications from a web browser can be created on top of

a RESTful framework; providing support for a vast range of languages can increase pene-

tration; multiple interfaces allow for a gentle learning curve.

Table 1.14: REST Architectural Constraints: libcurl

Constraint Imposed Behavior

Representation 
Metadata

Requests: Private linked list; can add headers
Responses: Metadata combined with data stream

Extensible Methods Yes

Resource/
Representation

Lack of separation between the resource being requested and 
the returned representation

Internal
Transformation

Option mechanism allows only one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No
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1.10.3.HTTPClient / HTTP Components
The Apache Software Foundation’s Jakarta Commons HTTPClient library is a Java-based

HTTP client framework. HTTPClient focuses on “providing an efficient, up-to-date, and

feature-rich package implementing the client side of the most recent HTTP standards and

recommendations.”[The Apache Software Foundation, 2005] Note that, as of this writing,

the project is preparing to be renamed to “Jakarta HTTP Components.”

Portability. HTTPClient is written in the Java programming language, therefore it

requires a Java Virtual Machine (JVM) to operate. While Java does provide a simple

HTTP client interface in its standard class libraries, it is not easily extensible and does not

support a wide-range of features. Therefore, HTTPClient focuses on offering a more com-

plete range of features compared to the built-in Java interfaces. An overview of replace-

ment Java HTTP client frameworks are available at [Oakland Software Incorporated,

2005].

Run-time Architecture. HTTPClient will attempt to reuse connections via HTTP Keep-

Alive’s wherever possible via connection pooling strategies. Therefore, HTTPClient

requires that developers explicitly release a connection after it is done to return it to the

connection pool. If the connection is still viable and has been released while another

request is conveyed to the same server, it will reuse the open connection. HTTPClient can

also support multiple concurrent connections through its MultiThreadedHttpConnection-

Manager class. Each connection is allocated to a specific thread with the manager class

being responsible for multi-plexing the active connections efficiently across threads.

Internal Extensibility. Since HTTPClient is written in Java, it is also written in an object-

oriented manner. Therefore, any core HTTPClient class can be extended and replaced to
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alter its functionality. For instance, HTTP methods are introduced by extending the primi-

tive method classes. HTTPClient also supports a wide-range of authentication mecha-

nisms through this same object-oriented extensibility mechanisms. HTTPClient also

supports altering its protocol compliance through the use of a preference model.

Importability. Due to the choice of Java, most usage of HTTPClient is restricted to Java

applications. Still, a broad range of applications have emerged using HTTPClient. The fol-

lowing is a selection of applications which have been written on top of HTTPClient[The

Apache Software Foundation, 2005]:

• Jakarta Slide - a content repository and content management framework

• Jakarta Cactus - a simple test framework for unit testing server-side Java code

• LimeWire - a peer-to-peer Gnutella client

• Dolphin - a Java-based Web browser

• Mercury SiteScope - a monitoring program for URLs and lots more

Lessons Learned. Possible to construct RESTful frameworks in Java; however, applica-

tions using HTTPClient are realistically limited to only those applications written in Java.

Table 1.15: REST Architectural Constraints: HTTPClient

Constraint Imposed Behavior

Representation 
Metadata

Metadata fields part of request and response objects

Extensible Methods Yes

Resource/
Representation

Separates request and response streams as discrete objects

Internal
Transformation

Extensible object model allows for one level of chaining

Proxy Can pass requests to a proxy

Statefulness Explicit support for setting, preserving, or ignoring cookies

Cacheability No
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1.10.4.Neon
neon differs from the other client frameworks mentioned so far in that it is focused on sup-

porting a specific extension to HTTP: WebDAV[Orton, 2005]. Web Distributed Authoring

and Versioning (WebDAV) is an official extension of HTTP which facilitates multiple

authors collaboratively editing REST resources[Whitehead, 1998][Goland, 1999][Clemm,

2002]. Therefore, in addition to basic HTTP client functionality, neon offers a number of

features that are of specific interest to WebDAV clients.

Portability. The neon library is written in the C programming language which does not

have explicit memory management support. Therefore, neon does offer some memory

management capabilities on top of the standard C libraries. neon can be configured in a

special memory-leak detection mode which tracks all allocations to the source files where

the allocation was initially made. Still, all memory allocations must be explicitly deallo-

cated or leaks will occur.

Since neon is not built on top of an explicit portability layer, it must therefore handle all of

the differences between platforms itself. neon offers support for Windows explicitly.

Unix-based platforms are supported through GNU autoconf, which facilitates auto-discov-

ery of most features of platform.[Free Software Foundation, 2005] Additionally, bindings

to the Perl language are available for neon.

Internal Extensibility. Like libcurl, neon offers two levels of interfaces: a simple inter-

face and a low-level interface.  Most developers can leverage the simple interfaces to per-

form basic HTTP client tasks.  These simple interfaces wrap a more intrinsic interfaces

which help shields the user from unnecessary complexities.  If more complicated client

operations are required, the lower-level interfaces are available for use.
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Extensibility with neon occurs through passing callbacks pointers that are then invoked at

certain points in time during the response lifecycle. With WebDAV methods, many of the

responses are often XML-based. To provide assistance to applications interacting with

WebDAV,. neon offers the ability to give callback functions that are invoked during the

XML parsing stage. This allows the application not to have to deal with the parsing them-

selves while retaining the ability to see the parsed data.

Run-time architecture. neon presents a synchronous network-blocking run-time archi-

tecture. When a user requests a URL from neon, control will not be returned until the

response has been completely handled by the registered handlers and readers. In addition

to these readers, neon offers the ability to receive notifications at certain connection-level

events (such as when a connection is established). At this time, neon does not support han-

dling multiple connections at the same time.

Importability. Due to neon’s focus on incorporating WebDAV-friendly features, applica-

tions that take advantage of WebDAV are the target audience. Since WebDAV is an exten-

sion to HTTP, neon can also perform HTTP tasks as well[Stenberg, 2003]. Applications

that use neon include:

• Litmus - a WebDAV server test suite

• Subversion - a version control system that is a compelling replacement for CVS which 

uses WebDAV

• davfs2 - WebDAV Linux File System

Table 1.16: REST Architectural Constraints: neon

Constraint Imposed Behavior

Representation 
Metadata

Request: Add metadata fields to request structure
Response: Register callbacks for specific metadata names
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Lessons Learned. A RESTful framework that focuses on providing support for an HTTP

extension (in this case, WebDAV) is possible and desired for those applications that use

these extensions.

1.10.5.Serf
Serf is an HTTP client framework that is inspired by the Apache HTTP Server’s

design[Stein, 2004]. Serf was designed by some of the principal architects of Apache

HTTP Server. (This author is one of those architects behind serf.) One of serf’s principal

goals was to explore the question of whether a REST-centric framework written for an ori-

gin server can also apply to a client. Due to these goals, serf shares a lot of conceptual

ideas with the Apache HTTP Server. Besides transporting these ideas to a client, Serf also

takes the opportunity to rethink some of the design decisions made by the Apache HTTP

Server.

Portability. Serf is written in C on top of the Apache Portable Runtime (APR) portability

layer. This is the same portability layer currently used by Apache HTTP Server. Therefore,

the cost of portability are shared with a much larger project that already has an established

Extensible Methods Yes

Resource/
Representation

Separate request and response structures

Internal
Transformation

Explicit function to support a representation transformation

Proxy Can pass requests to a proxy

Statefulness Cookie support either enabled or disabled by developer

Cacheability No

Table 1.16: REST Architectural Constraints: neon

Constraint Imposed Behavior
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portability layer. Additionally, serf uses the same pool-based memory management model

used by Apache HTTP Server. Therefore, serf’s memory model is similar to that of

Apache HTTP Server’s.

Internal Extensibility. The key extensibility concept in serf is that of buckets. These

buckets represent data streams which can have transformations applied to them dynami-

cally and in a specific order. This name can trace its origins through Apache HTTP

Server[Woolley, 2002] and, from there, back to the libwww-ada95 library[Fielding, 1998].

In turn, this layering concept is related to Unix STREAMS[Ritchie, 1984].

Serf’s usage of buckets has more in common with the Onions system of libwww-ada95

than with Apache HTTP Server’s bucket brigade model. The description of Onions

described its model as:

A good network interface should be constructed using a layered paradigm in order 

to maximize portability and extensibility (changing of underlying layers without 

affecting the interface), but at the same time must avoid the performance cost of 

multiple data copies between buffers, uncached DNS lookups, poor connection 

management, etc. Onions are layered, but none of the layers are wasted in prepar-

ing a meal.[Fielding, 1998]

However, Onions was only implemented as an abstract layer without any actual client

implementations completed. Apache HTTP Server 2.x implemented a complete system

around their bucket brigade system and serf based its initial bucket types on the choices

represented in Apache HTTP Server. Therefore, serf represents a fusion of the concepts

behind Onions and the concrete contributions of Apache HTTP Server.
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Run-time architecture. Serf is designed to perform non-blocking network connections -

this means that, at no time, do serf buckets wait to write or read data on the network.

Therefore, the buckets can only process the immediately available data. This decision was

made to allow serf to handle more connections in parallel than other synchronous (net-

work-blocking) frameworks. If no data is available to be written or read on any active con-

nection, serf will leverage platform-specific optimizations to wait until such data is

available (such as polling). Therefore, serf can gracefully scale up to handling large num-

bers of network connections in parallel as it will only be active when data is immediately

available.

This decision to support asynchronous network behavior comes at a cost of extra com-

plexity in writing buckets for serf. This complexity is related to the fact the bucket can not

wait for the next chunk of data - only the connection management code can perform these

wait operations. In order to address this concern, serf buckets must be written following

the behavior of a finite-state machine. If enough data is not available to proceed to the next

stage, then the bucket must indicate that it can not proceed further. After all connections

reach this exhausted state, the connection manager will then enter the waiting state until

more data is received.

Importability. At this point, no specific applications exist which use serf. A simple pro-

gram which fetches resources using serf is available. There is also a proof-of-concept

threading spidering program that uses serf’s parallelization and pipelining capabilities.

Plans are currently in place to integrate Subversion with serf. The rationale behind this

integration is that Subversion has introduced a number of custom WebDAV methods for

performance reasons because neon does not support HTTP pipelining[Erenkrantz, 2005].
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We believe that serf can resolve these performance problems and remove the need for cus-

tom methods solely for performance reasons[Fielding, 2005].

Lessons Learned. Possible to reuse portability layers from a RESTful server (Apache

HTTP Server) in a RESTful framework; asynchronous behavior places additional con-

straints on developers; transformations through STREAM-like interfaces increases flexi-

bility in transformations

1.11.Constructing RESTful Application Architectures
Even in the presence of these systems that have been described so far, these architectures

do not fully describe all RESTful applications. Fully-functional REST applications, like

electronic-commerce web sites, leverage these architectures already described to build a

larger application. However, the fact that particular internal architectural constraints foster

the benefits provided by REST does not imply that an application building upon that style

could never violate the REST principles. We will now examine a few technologies that are

Table 1.17: REST Architectural Constraints: serf

Constraint Imposed Behavior

Representation 
Metadata

Requests: Add metadata fields to request bucket
Responses: Retrieve metadata bucket chain from response

Extensible Methods Yes

Resource/
Representation

Explicit response and request buckets

Internal
Transformation

Multiple transformations can be applied independently

Proxy Can pass requests to a proxy

Statefulness No cookie support

Cacheability No
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commonly used to build RESTful applications and how they interact with the REST con-

straints.

1.11.1.Common Gateway Interface (CGI)
NCSA described a prototypical Common Gateway Interface (CGI) application as:

For example, let's say that you wanted to “hook up” your Unix database to the 

World Wide Web, to allow people from all over the world to query it. Basically, 

you need to create a CGI program that the Web daemon will execute to transmit 

information to the database engine, and receive the results back again and display 

them to the client. This is an example of a gateway, and this is where CGI, cur-

rently version 1.1, got its origins.[National Center for Supercomputing Applica-

tions, 1995]

A CGI program can be written in any compiled programming language (e.g. C, Java, etc.)

or can be interpreted through a scripting language (e.g. Unix shell, Perl, Python, TCL,

etc.). The only requirement is that the CGI must be executable on the underlying platform.

When a CGI program is invoked by httpd, the CGI program can rely on four ways to trans-

fer information from the CGI program and the webserver and vice versa:

• Environment variables: determine the metadata sent via the HTTP request

• Command line: determine if there are any server-specific arguments

• Standard input: receive request bodies from the client (such as through POSTs)

• Standard output: Set the metadata and data that would be returned to the client

Example CGI Applications. Deployment of CGI was common by 1994 and documenta-

tion relating to CGI was included in the NCSA HTTPd documentation.[National Center

for Supercomputing Applications, 1995] The NCSA HTTPd 1.3 release included a num-

ber of example CGI scripts. One example included in NCSA HTTPd 1.3 was an order
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form for Jimmy John’s submarine shop located in Champaign, Illinois (cgi-src/jj.c). Upon

initial entry to the submarine shop site, an order form was dynamically presented to the

user listing all of the ordering options: subs, slims, sides, and pop. The user would then

submit an HTML form for validation. The jj CGI script would then validate the submitted

form to ensure that the name, address, phone, and a valid item order was placed correctly.

After validation, orders were then submitted via an email to FAX gateway for further pro-

cessing.

REST Constraints. We begin to see a constraint of the external architecture peeking

through with CGI: HTTP mandates synchronous responses. Therefore, while the CGI pro-

gram was processing the request to generate a response, the requestor would be ‘on hold’

until the script completes. During the execution of the script, NCSA warned that “the user

will just be staring at their browser waiting for something to happen.”[National Center for

Supercomputing Applications, 1995] Therefore, CGI script authors were advised to make

the execution of their scripts short so that it did not cause the user on the other end to wait

too long for the response.

CGI introduced clear support for two REST constraints: extensible methods and

namespace control. Although, CGI was most commonly used with the GET and POST

HTTP methods, other methods could be indicated through the passed

REQUEST_METHOD environment variable. This allows the CGI script to respond to new

methods as they are generated by the client.

Additionally, CGI scripts could define an arbitrary virtual namespace under its own con-

trol. This was achieved by the PATH_INFO environment variable. NCSA’s CGI docs

describe PATH_INFO as:
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The extra path information, as given by the client. In other words, scripts can be 

accessed by their virtual pathname, followed by extra information at the end of this 

path. The extra information is sent as PATH_INFO. This information should be 

decoded by the server if it comes from a URL before it is passed to the CGI script.

For example, if a CGI program is nominally located at /cgi-bin/my-app, then a request to /

cgi-bin/my-app/this/is/the/path/info, would execute the my-app CGI program and the

PATH_INFO environment variable would be set to “/this/is/the/path/info”. This presents

the appearance of a namespace that the CGI script can respond to appropriately.

1.11.2.HTML Forms
A browser supporting HTML forms allows a content developer to allow the end-user to

fill out fields on a web page and submit these values back to the server. Without forms, the

interaction a user could have with a site was relatively limited as they could not specify

any input to be submitted to the server other than the selection of a hyperlink. A simple

example of an HTML form as it would appear to a user as shown in Figure 1.19 on

page 87.

As shown above, there are two key HTML tags in an HTML form: form and input. The

form tag declares to the browser that a form should be displayed. Within the form tag, the

method attribute indicates whether a GET or POST method should be used when the form

is submitted and the action attribute specifies what URL the method should be performed

on. The input tag defines all of the fields in the form. The type attribute indicates the for-

mat of the data field. A special type attribute is the “SUBMIT” field which indicates that

when this button is selected, the entire form is submitted to the server.
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Deployment. NCSA Mosaic for X 2.0, released in November 1993, was one of the first

browsers to support FORM tags.[Andreessen, 1993][National Center for Supercomputing

Applications, 1999] A specification of forms was first included in HTML+ announced in

November 1993 as well[Raggett, 1993]. Almost all browsers after that point included

HTML forms support and form usage remains a cornerstone of websites to this day.

REST Constraints. Forms have a particular interaction within the REST semantics. For a

“GET” action form, the data is submitted appended to the specified URL as a query string

using the GET HTTP method. In the example above, if a user typed ‘John’ into the ‘first’

field and ‘Smith’ into the ‘last’ field and chose to submit the form, the corresponding GET

request would look like:

http://www.example.com/cgi-bin/post-query?first=John&last=Smith

However, if the action specified a “POST”, that same form would be submitted to the http:/

/www.example.com/cgi-bin/post-query resource with the following request body:

<FORM METHOD="POST" ACTION="http://www.exam-

ple.com/cgi-bin/post-query"> 

First Name: <INPUT NAME="first"><br/>

Last Name: <INPUT NAME="last"><br/>

To submit the query, press this button: <INPUT TYPE="submit" 

VALUE="Submit">.

 </FORM>

Figure 1.19: Form Browser Example (HTML snippet and screenshot)
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first=John&last=Smith

Limitations in early browsers limited the amount of data that could be appended to a GET

query string; therefore, usage of forms gravitated towards POST forms instead of GET.

Depending upon the meaning of form submissions (specifically whether or not it changed

the underlying resource), this could be an incorrect usage of the POST method.

1.11.3.JavaScript
As discussed in “Early Netscape Navigator Architecture” on page 45, JavaScript was first

introduced with Netscape Navigator in 1995. JavaScript is a client-side interpreted script-

ing language that allowed content developers, through special HTML tags, to control the

behavior of the browser.[Champeon, 2001] Therefore, it differs from server-side scripting

languages like PHP in that it is executed within the context of the user agent - not that of

the origin server. However, the content developer still remains in control of the script.

After the success of Navigator, almost all browsers subsequently introduced JavaScript

support. Additionally, the JavaScript language is now an ECMA standard.[Eich, 2003] As

mentioned with “Current Mozilla Architecture” on page 53, JavaScript as a language pro-

vides the core extensibility language for Mozilla Firefox extensions.

Brendan Eich, the initial implementor of JavaScript at Netscape, relates the beginning of

JavaScript, “I hacked the JS prototype in ~1 week in May [1995]...And it showed! Mis-

takes were frozen early”[Eich, 2005] This new scripting language was originally called

“Mocha”, but was later renamed to “JavaScript” due to marketing influences between

Netscape and Sun. While JavaScript’s syntax was loosely modeled after the Java program-

ming language, the relationship was only superficial. The object model of JavaScript was

inspired more by HyperCard than Java and was tailored to the specific minimal needs of a
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content designer attempting to control the browser. JavaScript would be embedded inside

of the HTML representations and a JavaScript-aware browser could then interpret these

embedded scripts on the client-side.

More recently, sites are now using asynchronous JavaScript mechanisms and other

browser technologies (under the collective moniker AJAX) to create richer web-centric

applications.[Garrett, 2005] Earlier works such as KnowNow’s JavaScript-based micro-

servers presaged this later work.[Udell, 2001][Khare, 2004] AJAX and mashups are dis-

cussed in more detail in Section 3.7 on page 119.

1.12.Discussion
Through our examination of these RESTful architectures, a clear pattern emerges that can

describe the progress made over the last ten years as viewed through our framework

prisms. These evolutionary stages are:

• External Extensibility - Attract end-users

• Internal Extensibility - Attract developers

• Portability - Expand the reach of the underlying architecture

• Run-time Architecture - Improve performance and lessen security vulnerabilities

At each stage, we can clearly see how the constraints set forth by REST interacted with the

decisions made by architects to improve their systems.

1.12.1.External Extensibility
As we have seen, initially, RESTful applications (although it wasn’t termed as such then)

featured extensibility only through external modifications that were not part of the internal

architecture. There were very few changes that could be made architecturally to NCSA

httpd and Mosaic. In a hypermedia domain, as was the initial target of the WWW's cre-
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ators, being able to support various types of content is critically important. Instead of just

supporting delivery of static files, NCSA httpd introduced CGI to allow different forms of

content to be dynamically generated and delivered to the client. This concept has evolved

to other scripting languages such as PHP, JSP, and ASP which offer more specialized fea-

tures meant for constructing Web-enabled content.

Similarly, NCSA Mosaic introduced the concept of helper applications in order to permit

the user to view a broad spectrum of media types. This allowed formats that Mosaic did

not natively understand to be viewed by an external application. However, by having such

a sharp divide between these helper applications and the user agent, the browsing experi-

ence suffered a severe blow since the concept of having links between content was lost.

Netscape Navigator repaired this problem by introducing internal content plug-ins which

could render specific media types inside the browser window and maintain the complete

hypermedia experience.

These initial choices represented the priorities of the communities at that time. At the early

stages of the WWW, the main goal was to attract end-users - not architects. This goal pre-

dictably led to architectures focused on interfacing with external applications. As these

capabilities were utilized by a wider community, more people became interested in how to

change the behavior of the architecture dynamically. The need for more expressive and

powerful architectures became understood.

1.12.2.Internal Extensibility
Once this critical mass of users was reached, businesses started to investigate how they

could leverage the WWW for their own purposes. Due to their experiences with the initial

basic hypermedia content, they began to understand more about what they could concep-
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tually achieve with the WWW. Eventually, electronic-commerce and other richer Web-

enabled application were conceived. This led to a boom of interest around the core infra-

structure providing this framework. However, the architectures present at that time were

not flexible enough to address their individual needs for this next generation of websites.

These assessments led to either radical rewrites (Apache with its Shambala fork, Mozilla

with XPCOM) or new code bases (NCSA Mosaic to Netscape Navigator) that greatly

improved the extensibility of the overall system compared to their predecessors. Those

architectures, such as NCSA httpd, that did not have these extensibility characteristics

faced marginalization over time and have largely disappeared from use.

The defining characteristic of these new architectures is that they focused heavily on

extensibility by allowing extension designers to alter the behavior of the system dynami-

cally without altering the original implementation. Instead of providing a monolithic

architecture that aimed to achieve every conceivable task, these architectures provided for

a minimal core that could be extended through well-defined mechanisms. In the case of

Apache, almost all functionality bundled with the server is not built into the core, but

rather through its own extensibility mechanisms (hooks and filters). Over time, a strong

community of external extension designers emerged that modified Apache to suit their

needs. Without this minimal and extensible core, the diverse range of Apache modules

would not have been possible.

1.12.3.Portability
For those architectures that did not explicitly target a single platform (as Microsoft’s IIS

and Internet Explorer did), the next challenge was how to support a broad range of plat-

forms without sacrificing performance or other beneficial characteristics. This work led to
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the production of two platform abstraction layers: APR with Apache HTTP Server and

NSPR with Mozilla. Notably, these abstraction layers are characterized by providing opti-

mizations on platforms where they are available. This is in contrast to the “least common

denominator” approach taken by other portability layers and programming languages.

Additionally, while some ultimately aborted efforts were undertaken to rewrite these

RESTful architectures in a “better” programming language such as Java, the top choices

remain C and C++. By using C directly, as seen with cURL, a number of bindings to other

languages can be provided which allow extension developers to enhance the architecture

in the language of their choice.

Even though most of our surveyed systems are written in C or C++, most have incorpo-

rated special features to help deal with supposed shortcomings of C - specifically with

regards to memory management.   In some instances, these features take advantage of the

RESTful protocol constraints. For example, the Apache HTTP Server takes extreme

advantage of the defined RESTful processing flow in its memory management model.

Instead of tying itself to a non-deterministic garbage collector (such as offered by Java),

Apache’s memory model ties allocations to the life span of an HTTP response. This offers

a predictable memory model that makes it easier for developers to code modules with

Apache, not suffer from memory leaks, and offer significant performance advantages.

1.12.4.Run-Time Architecture
After the previous three dimensions were addressed, we often see a return to the initial

run-time architecture decisions. By this time, the systems have usually had a lot of real-

world experience to provide substantial feedback as to how the run-time architecture

could be improved. RESTful protocols through its mandated explicit stateful interactions
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imply that the ideal run-time architecture does not need to exhibit complex coordination

capabilities - each interaction can be handled independently and in parallel. Even with this

beneficial characteristic, the scalability of the architecture can strain the underlying oper-

ating environment with certain types of workloads. Therefore, threading or asynchronous

network behavior is introduced to the architecture. However, the cost of adding threading

or asynchronous behavior after the system has been deployed is extremely prohibitive.

We see the negative effects of this with the jump from Apache HTTP Server 1.3 to 2.0

through the introduction of threading with the MPM policy layer. As part of the transition

from 1.3 to 2.0, extension developers had to make their modules thread-safe. Many

Apache modules were not written with thread-safety in mind and hence have not been

updated to the new versions of Apache due to the additional complexity in making the

code thread-safe. Retrofitting in threads was also painful for the Mozilla architecture as

early Mozilla builds had to introduce a new networking layer so that the network layer

would be multi-threading. Therefore, if high-performance workloads are ultimately

desired from a RESTful system, threading and asynchronous network access should be

essential anticipated qualities from the beginning of the architectural design.

Scalability is not the only reason to reconsider the run-time architecture of these RESTful

systems. As seen with IIS 6.0 and the forthcoming Internet Explorer 7, poor early architec-

tural decisions about the run-time architecture can impact the security of the system by not

providing enough barriers against malicious behaviors.

1.12.5.Impact of Security on RESTful Architectures
In the provenance of a RESTful world, extensibility can not remain unchecked. Due to the

proliferation and ubiquitous nature of the WWW today, these RESTful architectures are
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constantly under attack by malicious entities. Worms like Code Red, which specifically

attacked Microsoft’s IIS, caused two noticeable reactions: a slight drop in market share of

the affected product and a new security-centric architecture release. Microsoft reacted to

the attacks by redesigning IIS to focus on security at the expense of extensibility. Micro-

soft is also redesigning Internet Explorer in similar ways for an upcoming versions of

Windows to combat its poor security reputation.

Therefore, from an architectural perspective in this domain, we can view security as the

imposition of constraints on extensibility. For these RESTful systems, the minimal core

architecture is generally trusted to be secure - however, extensions or content are no longer

as trusted as they once were. A fence has been erected between the core of the RESTful

architecture and its components. The absence of this fence came at an extreme price to

those people who had their systems compromised due to faults that a sound architecture

could have prevented.

While the link between security and extensibility is real, it is however not quite as strong

as Microsoft claims with their Internet Information Services 6 and Internet Explorer 7 re-

architectures. They may be over-emphasizing the importance of security due to their own

past poor attitudes towards security. Other competitors, such as Apache HTTP Server and

Mozilla, have an arguably better long-term reputation towards security than Microsoft.

While these projects haven’t been free of security vulnerabilities either, large-scale attacks

haven’t occurred against their products.

The reason for these lack of attacks can’t be attributed to poor market share alone: Apache

HTTP Server currently has a 2-to-1 advantage over IIS according to Netcraft[Netcraft,

2009]. Mozilla Firefox has made improvements in its market share in the last year by try-
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ing to capitalize on the security problems with Internet Explorer in the minds of the con-

sumers. A commentator recently compared Firefox’s security with Internet Explorer’s and

remarked:

I ask only that the vendor be responsible and fix the security vulnerabilities, espe-

cially the critical ones, in a timely fashion. Microsoft isn't one of those vendors. 

According to Secunia, Internet Explorer 6.x has several unpatched, critical security 

vulnerabilities dating back to 2003 (the first year Secunia offered its own security 

alerts). And this month, Microsoft arrogantly decided not to issue any security 

patches--none.[Vamosi, 2005]
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CHAPTER 2

Dissonance: Applications

Despite their apparent simplicity, the REST principles have proven difficult to understand

and apply consistently, leaving many web systems without the benefits promised by

REST, including sites that do not support caches or require stateful interactions. To better

understand why, we now recount our personal experiences building and repairing two web

systems: mod_mbox, a service for mail archiving, and Subversion, a configuration

management system.

2.1. mod_mbox
As core contributors to the open-source Apache HTTP Server, we required a scalable,

web-based mail archive to permanently record the design rationales and decisions made

on the project mailing lists. In addition to the lists of the Apache HTTP Server Project

(which include developer-to-developer traffic, user-to-user assistance, automated source

change notifications, and issue tracker notices), we wished to deploy a mail archive capa-

ble of archiving all of the lists across the entire Apache Software Foundation. In total,

there are over 650 lists, some of which receive over 1,000 messages a month and have

been active for over a decade. To date, the archive houses over 5 million messages and

receives nearly 2 million requests per month. From the outset, it was clear that we would

need to explicitly consider scalability as a primary factor in order to support an archive of

this size and traffic.
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2.1.1. Alternative mail archivers
At the time we started the project in the middle of 2001, no archivers fully met our

requirements. Some systems, such as MHonArc [Hood, 2004], converted each incoming

message into HTML and recomputed the archive and list index as new messages arrived.

This constant index regeneration proves problematic for high-traffic archives - the time to

recompute the index and regenerate the HTML for all messages in the archive (usually

split out into monthly segments) often takes longer than it would for new messages to

arrive in peak hours. Therefore, an alternative strategy would be to delay the generation of

the HTML until absolutely necessary - this follows RA2 in creating dynamic representa-

tions of the mailing list archive. Additionally, it would be important to introduce a cache

(RA5) to help facilitate indexing and retrieval to minimize the latency in producing these

dynamic representations.

Other web-based archivers, such as Eyebrowse [CollabNet, 2006], generated message

links whose ordering reflected the sequence in which messages were loaded into the

archive. Therefore, the first message loaded into the global archive was assigned an identi-

fier roughly analogous to 1, the second message received 2, and so on. In order to retrieve

the message from the archive, the exposed resource would be in the form of http://

www.example.com/archive/viewMessage?id=50. However, in the event of a

hardware failure or other database corruption, the archive would have to be regenerated

and there would be no guarantee of consistency of identifiers between database loads. This

inconsistency would mean that any prior links to the archive (such as those from our own

code or other emails) would be stale or, even worse, refer to a different message than orig-

inally intended. Therefore, it was critical to identify a persistent naming scheme for

resource (RA1) that would not invalidate links at a later date.
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2.1.2. mod_mbox Architecture
Informed by our experience with the Apache HTTP Server, we were confident that we

could create a new web-based archiver, mod_mbox [The Apache Software Foundation,

2006], based on the REST principles, that would not suffer from the shortcomings of other

archivers. However, as we discovered, REST alone was neither sufficiently expressive nor

definitive. mod_mbox required two additional constraints beyond those dictated by

REST: dynamic representations of the original messages and the definition of a consistent

namespace. The architecture of mod_mbox is depicted in Figure 2.1 on page 99.

Instead of creating HTML representations as messages arrive, mod_mbox delays that

transformation until a request for a specific message is received. On arrival, only a meta-

data entry is created for a message M. Only later, when message M is fetched from the

archive, does an Apache module create an HTML representation of M (with the help of

M's metadata entry). This sharp distinction between the resource and its representation

(RA1, RA2) minimizes the up-front computational costs of the archive—allowing

mod_mbox to handle more traffic. As depicted in Figure 2.2 on page 100, to achieve a

consistent namespace, mod_mbox relies upon M’s metadata (the Message-ID header).

Consequently, if the metadata index is recreated, the URLs of the resources (messages)

remain constant—guaranteeing the long-term persistence of links. After adopting these

constraints, mod_mbox scaled to archive all of the mailing lists for The Apache Software

Foundation (in excess of 5 million messages to date) with consistent and persistent links.

2.2. Subversion
Subversion [CollabNet, 2008], a source code manager designed to be a compelling

replacement for the popular CVS, made a decision early on to use WebDAV, a set of
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extensions to HTTP, for repository updates and modifications. Hence, by conforming to

the REST constraints, the Subversion developers (of which this author is one of the core

contributors) expected that Subversion’s implementation would be low latency, amend-

able to caching, and support the easy construction and introduction of intermediaries

(RA5, RA4, RA6).

Figure 2.1: mod_mbox architecture
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2.2.1. Subversion, WebDAV, and HTTP/1.1
Fundamental to Subversion is a global, monotonically-increasing revision number denot-

ing the state of the repository, hence each file in Subversion is uniquely identified by the

combination of the global revision number and the path in the repository. Additionally, in

order to permit certain off-line operations and to optimize certain network operations,

Subversion requires having a pristine copy of each file locally on the client in a private

location. Therefore, each Subversion client when it initially checks out the repository must

retrieve an unmodified version of the file, and on subsequent updates, the difference

between the last retrieved pristine file and the youngest (latest) version is applied locally.

This ensures that the client always has an up-to-date copy and also optimizes later network

retrieval by only requiring differentials to be sent rather than the complete full-text content

every time.

As part of exposing the repository via WebDAV, the Subversion developers created a set

of mappings to permit clients to retrieve specific versions of a file. In Subversion, this

decision was made to expose all of the necessary parameters explicitly in the URL space.

Figure 2.2: mod_mbox URL structure
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Therefore, the file baz in the directory foo/bar at revision 1234 would be exposed via

WebDAV as /path/to/repos/!svn/ver/1234/foo/bar/baz. As a shorthand

mechanism, the youngest (latest) version would be exposed as /path/to/repos/

foo/bar/baz.

In order to retrieve a collection of files in this mapping (say all of the files in the foo/

bar directory), WebDAV and HTTP/1.1 do not directly support fetching multiple files in

the same request - therefore, the request must be performed individually for each file or a

new custom method must be introduced. The lack of batch requests was acknowledged in

the early days of standardizing the HTTP protocol, but was not clearly articulated within

REST itself. As a mechanism to reduce the latency effects of many small requests, “pipe-

lining” was introduced. In this mechanism, clients issue multiple HTTP/1.1 requests with-

out waiting for the responses. This process will optimize the network pipeline by not

requiring the responses to be fully processed by the client before the next request is issued.

Of note, HTTP/1.1 does not support out-of-order responses; therefore, the server must

respond serially to the requests. Yet, as we will see, taking full advantage of this pipelining

mechanism is crucial when trying to adhere to the REST principles.

The idealized process demonstrated in Figure 2.3 on page 102 shows the conceptual task

that must be performed: the user agent must request all necessary files and the origin

server will respond with the content of those files so that the client can store them on disk.

The challenge we faced with Subversion is how to perform this task efficiently without

compromising the REST principles.
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2.2.2. Subversion’s initial network architecture
The earliest implementation of Subversion utilized the network as depicted in Figure 2.4

on page 103. To achieve the quickest turnaround on implementing a WebDAV client, the

Subversion developers adopted the existing neon client library to implement the protocol

semantics of WebDAV. This library was chosen because it offered most of the functional-

ity necessary to implement a rich WebDAV client. The update functionality in Subversion

over neon was implemented over one network connection and performed simple GET

requests of the versioned resources. The use of GET requests meant that it was relatively

straightforward to introduce a standard caching intermediary which would help reduce the

load on the master Subversion server (origin server). However, one notable omission from

the neon library is that it did not support HTTP/1.1 pipelining. Therefore, all responses

must be fully processed before the next request could be issued. Unsurprisingly, this made

the checkout/update performance of Subversion unacceptable as the latency characteris-

tics caused by the time that the network pipeline was left idle had a substantial impact on

the overall performance.

Figure 2.3: Idealized network architecture for Subversion
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This poor network performance can be more generally attributed to not taking into due

consideration the physical characteristics of the underlying network connection [Smith,

2009][Khare, 2003]. Per [Smith, 2009], latency can be defined as the propagation delay

(time to transmit one bit from source to destination and back again) plus the data unit size

(how much data is sent at one time) divided by the bandwidth (how much data can be sent

simultaneously). In an application that does not keep the network pipeline constantly

active–such as Subversion’s initial design–but rather has substantial time lapses between

packet transmissions (since the client must fully process the last response before issuing a

new request), network latency can have a substantial impact on the observed performance.

In a physically co-located network where the propagation delay can be measured in nano-

seconds, the latency effects on the application are minimal. However, when using trans-

continental links where the propagation delay is on the order of 40ms or inter-continental

Figure 2.4: Initial realized architecture
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links where propagation delays can reach up to 180ms, latency can have a dramatic effect

on the overall application performance. Therefore, upon proper reflection and due consid-

eration of network latency properties, it should not be surprising that the real-world net-

work performance of Subversion was so initially underwhelming.

2.2.3. Subversion’s batch request architecture
In order to improve serial performance and reduce network roundtrip latency, Subversion

developers decided to implement a custom WebDAV method.1 The updated architecture is

reflected in Figure 2.5 on page 105. Rather than request each resource individually, the

new Subversion client issued a single bulk request for all needed resources at one time. As

expected, this change greatly improved reduced the network latency and made the update

operation much faster. However, this custom WebDAV method required that all of the data

(including the content stored in Subversion—which, of course, could be binary and of

arbitrary size) be XML-encoded. XML encoding has been shown to increase transfer vol-

umes by approximately 33% [Nottingham, 2004] as well as being computationally expen-

sive to construct and decode [Davis, 2002]. Therefore, while the introduction of this

custom method did improve the overall performance, the introduction of XML encoding

introduced substantial inefficiencies of its own into the network.

As a further consequence of adopting a custom method, it was no longer possible to

deploy a standard caching intermediary to help reduce the load on the master Subversion

server. As a result, a new custom intermediary had to be written and deployed to help

reduce the load on Subversion servers [Erenkrantz, 2002].

1. Actually, the REPORT method was (re)used which had largely undefined semantics in the Web-
DAV standard.
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2.2.4. Subversion’s revised architecture with serf
Due to the inefficiencies presented by the XML encoding and the additional requirement

for custom intermediaries, the Subversion developers wrote an alternate client framework,

serf, replacing the neon library previously used. As discussed previously in this chap-

ter, the critical omission from the initial architecture was the neon could not support pipe-

lining. Therefore, serf would implement a model conducive to supporting pipelining

along with asynchronous requests and responses in addition to adhering to the REST prin-

ciples and constraints. (For more information on serf, please see Section 1.10.5 on

page 80.) The network architecture for Subversion powered by serf is depicted in

Figure 2.6 on page 106. In addition to supporting pipelining, serf also permitted the

Subversion client to multiplex the update process across multiple connections further

reducing the impact of network latency. Now that Subversion could take advantages of

pipelining, there was little need for the custom WebDAV method and the client could

again simply retrieve the content via the GET method. Since the client used the standard

Figure 2.5: Batch request architecture
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HTTP/1.1 protocol semantics again, simple caching intermediaries could be reintroduced

into the network without requiring custom intermediaries. Plus, by removing the custom

method, the overhead imposed by XML encoding could also be reverted. Additionally,

further optimizations were introduced which reduced the number of requests in typical

operations without violating any standard semantics or jeopardizing intermediaries. All of

these changes allow the new Subversion client to scale gracefully yet adhere to the REST

principles.

2.3. Lessons learned
As we have seen in this chapter, mod_mbox scaled in part because it delayed representa-

tion generation until the last possible moment. Consumers of a service are usually better

Figure 2.6: Successful pipelined network flow
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positioned to specify exactly the representations characteristics that they want rather than

having a service provider determining beforehand which characteristics will be presented.

Subversion had scaling problems because it did not account for the bandwidth-delay prod-

uct of network connections and had no provision for optimizing the network pipe. By

migrating the computations (in the form of custom methods) from the client to the server,

the performance was improved. However, this migration was done in a way that led to

other inefficiencies which frustrated intermediaries. Further improvements to Subversion

to decouple communication and representation transformations internally minimized

latency effects, reduced network traffic, and improved support for caching. Also, Subver-

sion was able to deploy protocol-level optimizations that did not conflict with HTTP/1.1.
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CHAPTER 3

Dissonance: Web Services

“Web services” have emerged to expose finer-grained computational resources than the

coarser-grained content resources of the traditional view of the Web. There are two popu-

lar approaches to web services: one that relies upon SOAP and “service-oriented architec-

tures,” and another that conforms to REST principles and “resource-oriented

architectures.” We will compare, contrast, and present examples of these approaches.

Additionally, we discuss the impact of a relatively minor alterations to a REST-based pro-

tocol (cookies) and explore how this minor alteration created architectural dissonance in

the Web. Finally, we assess the emergence of computational exchange on the Web in the

form of AJAX and mashups.

As we illustrate throughout this chapter, the REST style, by itself, has proven insufficient

to guide or characterize the introduction of these services. “Service-oriented architectures”

only pay limited lip service to the REST style underpinning the web and more closely rep-

resent the antiquated client-server architectural style and is ill-suited in its current form for

Internet-scale deployment. Even the “resource-oriented architectures” which claim to con-

form to REST are required to navigate a set of hidden and under-articulated principles in

order to succeed. Despite the knowledge that cookies are harmful, they still perform vital

tasks today. And, REST has little to offer to help us understand what role AJAX and mash-

ups play in today’s web. This lack of guidance has resulted in a striking dissonance

between the idealized architecture embodied by REST and the realized Web of today.
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3.1. Web Services: Approaches
Figure 3.1 on page 109 and Figure 3.2 on page 109 compare SOAP-based web services

(often referred to as “service-oriented architectures” [Papazoglou, 2003][Colan, 2004])

and “RESTful”-based web services (sometimes referred to as “resource-oriented architec-

tures” [Richardson, 2007]). One clear distinction between the two approaches is their use

of resources [Mitchell, 2002]. The “RESTful”  HTTP/1.1 request of Figure 3.2 on

page 109 leverages resources by providing all of the requisite information in the resource

name (requesting /Reservations/itinerary with a query string of id=FT35ZBQ)

while the SOAP request of Figure 3.1 on page 109 adds a level of indirection in naming

the resource. This particular SOAP request asks the /Reservations resource to invoke

the retrieveIntinerary function with the reference argument being set to

FT35ZBQ. These seemingly inconsequential differences leads to several architectural dis-

sonance points with REST.

POST /Reservations HTTP/1.1
Host: travelcompany.example.org
Content-Type: application/soap+xml
Content-Length: ...

<?xml version="1.0" ?>
<env:Envelope...>
   <env:Body>
      <m:retrieveItinerary...>
         <m:reference>FT35ZBQ</m:reference>
      </m:retrieveItinerary>
   </env:Body>
</env:Envelope>

Figure 3.1: SOAP example (modified from Example 12a in [Mitra, 2003])

GET /Reservations/itinerary?id=FT35ZBQ HTTP/1.1
Host: travelcompany.example.org

Figure 3.2: REST example (modified from Example 12b in [Mitra, 2003])
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3.2. Web Services: Examples
There are many examples of both SOAP-based Web Services and RESTful services. In

fact, the two are not necessarily exclusive - many sites provide SOAP and RESTful inter-

faces to their services simultaneously. The primary audience of these interfaces is not end-

users interacting through a user-agent, but developers who wish to incorporate a “service”

into their own application. Among a plethora of examples, eBay provides services to

query current auctions [eBay, 2007], Flickr provides services to upload pictures and tag

photos [Yahoo, 2007], and Amazon.com facilitates access to their centralized storage

repository, S3, through services [Amazon Web Services, 2006].

3.3. Web Services: SOAP
Tracing its origins from the prior XML-RPC specification [Winer, 1999], Simple Object

Access Protocol (SOAP) was introduced as a lightweight “protocol” for exchanging struc-

tured information on the web [Gudgin, 2003]. The formulation and development of

SOAP-based web services has been a complex undertaking with vigorous discussion

within the community as to whether such services are even feasible and how to manage

their complexity [Cardoso, 2007][W3C, 2007]. “Service-oriented architectures,” with

SOAP as its foundation, have emerged in part as a response to the problems of service

exchange [Papazoglou, 2003]. Many specifications and standards were formulated to

enable composition, discovery, and evolution of these “service-oriented” architectures

[Fu, 2004][Bellwood, 2002][Ryu, 2008], but, as we shall now detail, these standards are

not built on a suitable technical underpinning and, if widely deployed, would threaten the

scalability of the web.
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To be clear, SOAP is not a protocol but a descriptive language expressed via XML trans-

ferred via another transport protocol such as HTTP. Alternative protocols such as SMTP

can be used with SOAP, but the prevailing use of SOAP is in conjunction with HTTP. To

that end, one of the stated reasons for the adoption of HTTP by early SOAP advocates was

that by using HTTP, SOAP implementations could get through corporate firewalls easily

[Prescod, 2002]. The use of HTTP as a transport mechanism was not made out of any par-

ticular understanding or adherence to the REST axioms which governed the HTTP/1.1

protocol. SOAP owes more to the legacy of remote procedure calls (RPC) and remote

method invocation (RMI) than that of hypermedia systems in which the web was designed

to accommodate [Davis, 2002]. Given this heritage, it is not surprising that the grid com-

munity has adopted SOAP-based web services as it is easy to represent the opaque RPC-

like services provided by a grid into the SOAP model [Foster, 2002]. However, in prac-

tice, SOAP corrupts the integrity of the REST architecture, and most problems due to

SOAP can be traced to architectural mismatches with REST and HTTP. Two such prob-

lems are elaborated here.

As discussed in Chapter 1, idempotent operations (RA5) are a fundamental REST con-

cept. To recap, per the RFC, certain HTTP methods (such as GET) are declared to be idem-

potent: if a GET is performed multiple times on a static resource, the results must be

identical; or on dynamic resources, the return representations should be valid for a specific

time frame (expressed via expiration metadata). Other HTTP methods (such as POST) are

non-idempotent: if a POST is performed multiple times on the same resource, the side

effects are undefined by the HTTP specification.
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Therefore, it is possible for a HTTP/1.1 intermediary serving as a caching proxy to always

cache the returned representation of any GET method while it can not cache representa-

tions generated in response to POST requests. This allows the caching proxy to achieve its

goal of reducing overall network latency by serving prior representations the next time it

sees a request for the same resource. However, in practice, most SOAP interactions always

employ the POST method of HTTP regardless of whether or not the result of the SOAP

interaction could be cached. Consequently, no intermediary (RA6) can know whether a

service call will be idempotent without specific semantic knowledge of the actions taken

by the SOAP receiver. Within REST, the protocol alone defines whether the operation is

idempotent, without any relationship to the resource.

Tunneling a separate SOAP envelope within HTTP also violates REST’s separation of

data and metadata (RA2). SOAP encapsulates the entire message—including all SOAP

metadata—in the body of the HTTP request as an XML entity. In order to properly parse

(and understand) the request, a SOAP intermediary must examine the entire body of the

HTTP request. In contrast, an HTTP proxy need only examine the metadata found in the

request line and request headers and can pass the request body through without any

inspection, as it is irrelevant for routing or caching. By hiding the routing and metadata for

SOAP inside the body of the HTTP request, a SOAP intermediary must peek inside the

body to ensure proper routing—a clear violation of RA2, the strict separation of metadata

(the HTTP headers) and representation (the SOAP message payload).

The (apparent) lack of idempotency and the necessity of deep inspection of requests in

SOAP interactions is a significant obstacle to intermediaries seeking to intelligently cache

SOAP messages sent over HTTP. A caching SOAP intermediary requires “proprietary
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knowledge” of the SOAP action in order to determine whether or not the response is cach-

able. Compared to existing HTTP/1.1 caching implementations (such as Squid[Rousskov,

1999]), a SOAP cache would have to read and parse the entire XML request body (which

has no theoretical size limit, but has been shown to introduce extreme latency into the

request processing[Davis, 2002]), often negating the latency benefits of a cache. There-

fore, such SOAP caches must always be custom developed and deployed with intimate

knowledge of the SOAP requests and responses and could only offer, at best, negligible

performance improvements. So, it is infeasible to create a generic reusable caching proxy

for a SOAP-centric environment. In practice, this omission threatens the scalability of

SOAP services because, unlike standard HTTP content servers, it is not possible to gener-

ically off-load the traffic by introducing “dumb” caches in front of the SOAP servers. Not

being able to strategically deploy caches is a tremendous threat to the scalability of the

overall Web if SOAP-based services were to proliferate.

3.4. Web Services: “RESTful” Services
Many content providers expose REST-compliant APIs for their products. As there is no

commonly accepted litmus test for REST compliance, we term those services that explic-

itly acknowledge REST in their description as “RESTful.” To help create “RESTful” ser-

vices, Richardson and Ruby have recently presented a process for creating “resource-

oriented architectures” and is described in Table 3.1 on page 114 [Richardson, 2007, pg.

216]. Other than this material, there is little concrete guidance available to service devel-
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opers. Consequently, as we will see, there is a wide range of variation in the structure and

semantics within the available “RESTful” services.

While RESTful services have not yet completely displaced their SOAP counterparts, they

do have well-known advantages. In a 2003 talk, an Amazon spokesperson mentioned that

85% of their service requests employed their RESTful API, not SOAP [O'Reilly, 2003],

and that querying Amazon using REST was roughly six times faster than with the SOAP

equivalents [Trachtenberg, 2003].

A fundamental property of these RESTful services is that they interact well with generic

HTTP/1.1 caching schemes (as outlined in [Wang, 1999]). Read-only operations are per-

formed via GET requests, so these responses are cacheable by intermediaries without any

special knowledge. However, write-able operations in RESTful services are conducted via

POST requests, so these responses can not be cached. Yet, the design of most backing sys-

tems for high-traffic sites offering RESTful services tends towards extremely high avail-

ability (that is, read operations succeed) rather than immediate consistency (that is, write

Table 3.1: Generic ROA Procedure from [Richardson, 2007, pg. 216]

1. Figure out the data set

2. Split the data set into resources

For each kind of resource:

3. Name the resources with URIs

4. Expose a subset of the uniform interface

5. Design the representation(s) accepted from the client

6. Design the representation(s) served to the client

7. Integrate this resource into existing resources, using hypermedia links and forms

8. Consider the typical course of events: what’s supposed to happen?

9. Consider error conditions: what might go wrong?
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operations can take time to take effect) [DeCandia, 2007][Chang, 2006]. This means that

these designs are geared to always successfully respond to GET requests while delaying

the effects of a POST request - in other words, reading dominates writing on the Web. In

addition, traffic analysis at one large university shows that 77-88% of the web traffic is

ideally cacheable, yet only 37-50% of the traffic is cached in practice - so there are effi-

ciencies still to be gained from new caching strategies [Saroiu, 2002]. Therefore, the web

as a whole is optimized for substantially higher read volumes than write volumes in order

to achieve the requisite high scalability requirements seen in practice [Vogels, 2009].

A critical mechanism for meeting the high scalability requirements of the Web is the stra-

tegic introduction of caches [Rousskov, 1999]. Since these caches can be deployed any-

where within the network, Leighton identifies three places that a cache can be successfully

deployed to reduce latency: the first mile, middle mile, and last mile [Leighton, 2009].

The first mile is operated by the agency owning the origin server so that they can distrib-

ute the traffic load amongst their web servers. Commonly referred to as “reverse proxies”

or “gateways”, software like Squid [Rousskov, 1999] and Varnish [Grenness, 2008] or

hardware appliances like F5’s BIG-IP [MacVittle, 2009], can be deployed with minimal

changes to the application to perform load balancing and caching in this first mile. In the

middle mile, a third-party (commonly referred to as a “content-delivery networks” or

CDNs[Pallis, 2006] - one example is Akamai[Dilley, 2002]) operates a private set of

caches in an attempt to help reduce latency. Some content-delivery networks even permit

deployment of Web-based applications to their edge nodes [Davis, 2004], or use custom

topologies to optimize their fetching algorithms [Katsaros, 2009]. Finally, for the last

mile, a “forward proxy” (again, a system like Squid can be used here) to cache the traffic
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of user-agents before the requests leave the local network. All three strategies combine to

help produce the incredible scaling characteristics of the Web.

Despite their prevalence and popularity, these implementations of REST services are

uneven at best—especially in comparison to other alternatives from the same provider.

eBay’s REST API is extremely limited, permitting just read-only operations (such as que-

ries). More advanced functions, such as posting new items, are available only through

their SOAP API. Others have REST interfaces that are roughly equivalent to their SOAP

counterparts; with Flickr, photos can be uploaded, tagged, and deleted in both interfaces

with only minimal differences. Finally, there are examples, such as Amazon’s S3, for

which their RESTful APIs are a superset of their SOAP counterpart.

3.5. Web Services: Observations
Overall, we observe that the closer the service semantics are to those of content, the more

likely the service is to have a rich REST API. For Amazon’s storage service, a mapping to

the content-centric nature of REST is straightforward and free of complications. REST

principles RA4 and RA5 are well-preserved in Amazon’s interface. On the other hand,

eBay’s service model is strongly tilted toward SOAP. How to explain the differences? In

part, the division between REST and SOAP may reflect a lack of design guidance; how

can services that are not content-centric, such as auction bidding (which are prominently

displayed in eBay’s SOAP interface but absent from the REST interface) be cleanly con-

structed in a REST-consistent manner? We opine that web services whose focus is nontra-

ditional resources are clearly under-served with REST alone and that their developers lack

adequate design guidance. Consequently, it is unsurprising that service providers offer

alternatives to fill this gap.
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Yet, more importantly, without the scalability provided by intelligent caching (such as

offered by off-the-shelf proxies and commercial CDNs), SOAP-based web services will

simply not be able to scale to meet the demands of the Web. Service-oriented architectures

will continue to be relegated to an isolated sphere of influence because SOAs will be inca-

pable of delivering the performance to form the critical backbone of the Web. We must

take away as a critical lesson that any true web services architectures must not inhibit the

scalability of the Web.

3.6. Cookies
Besides RESTful APIs and SOAP, cookies [Kristol, 1997] are another common mecha-

nism employed by developers to support services that span more than one request. Com-

paratively lightweight, cookies are a means for a site to assign a “session” identifier to a

“user.” To start the process (illustrated in Table 3.2 on page 117), an origin server provides

a cookie in response to a request via the “Set-Cookie” HTTP header. Inside of this cookie

Table 3.2: HTTP Cookie Example

Intent HTTP Protocol (adapted from [Kristol, 1997])

User identifies self via a 
form

POST /acme/login HTTP/1.1

form data

Server sends a cookie to 
reflect identity

HTTP/1.1 200 OK
Set-Cookie: CUST-ID="WILE_E_COYOTE"; 
path=/; expires=Sun, 17-Jan-
2038 12:00:00 GMT;

User returns cookie in a 
later request

POST /acme/pickitem HTTP/1.1
Cookie: CUST-ID="WILE_E_COYOTE"

form data
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are several attributes, the most important of which is an opaque identity token, a path rep-

resenting where the cookie should subsequently be presented, and an expiration date.

This addition of an identifier assigned by the server to a client makes it “easier” for web

developers to later remember the user who receives a specific cookie. As in our example,

by assigning a user the cookie CUST-ID="WILE_E_COYOTE", the website does not

have to later guess who the user is on subsequent accesses. Since the cookie is presented in

every subsequent request, the server will know that they are the WILE_E_COYOTE cus-

tomer just by inspecting the new request and not require any separate identity information.

However, there are serious security and privacy implications of cookies and “unless this

type of system [cookies] is implemented carefully, it may be vulnerable to exploitation by

unscrupulous third parties.” [Stein, 2003] Companies like Quantcast can perform statisti-

cal inferences based solely on cookie and clickstream information across many sites to

infer an individual’s demographic information (such as age, sex, income) even in the

absence of personally-identifying information [Quantcast, 2009]. In the early days of

cookies, browsers would explicitly ask a user before accepting a cookie; however, due to

the proliferation of cookies, browsers now silently accept cookies by default. According to

one survey, over 25% of all sites use cookies [E-Soft Inc., 2007]. Cookies have become an

integral part of the web in spite of the security and privacy concerns [Ha, 2006].

Besides the security and privacy implications, cookies also have poor interactions with the

history mechanisms of a browser [Fielding, 2000]. Once a cookie is received by a user

agent, the cookie should be presented in all future requests to that server until the cookie

expires. Therefore, cookies do not have any direct relationship to the sequence of requests

that caused the cookie to be set in the first place. Hence, if the browser’s back button is
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used to navigate in the page history prior to the initial setting of the cookie, the cookie will

still be sent to the server. This can lead to a “cookie that misrepresents the current applica-

tion context, leading to confusion on both sides” [Fielding, 2000]. This has led to a num-

ber practical problems that user-agent vendors are still attempting to deal with gracefully

[Petterson, 2008].

3.7. AJAX
We next take a look at ways in which service composition and encapsulation have been

addressed through REST—albeit not under the traditional banner of web services. Emerg-

ing classes of Web applications extend the notion of a REST interface in interesting ways.

One early example is Google Maps [Google, 2007] (shown in Figure 3.3 on page 120),

which employs an application model known as AJAX [Garrett, 2005], consisting of

XHTML and CSS, a browser-side Document Object Model interface, asynchronous

acquisition of data resources, and client-side JavaScript. Using these techniques, develop-

ers have created vibrant client-side applications that are low latency, visually rich, and

highly interactive.

As discussed at length in Chapter 2, early browser architectures relegated everything

(even image viewing) to external helper applications which would be executed when

“unknown” content (as indicated by the MIME type of the representation) arrived. Later

on, browsers gained the ability to support third-party plugins - systems such as Java

applets and Flash SWF applications rely upon this functionality. These plugins are able to

receive a “canvas” within the browser’s window to paint the content and interact with the

user. Due to security sandboxing restrictions, these plugins can not always easily interact

with the rest of the elements on a page. Additionally, these plugins are required to be writ-
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ten in the language of choice of the browser - which means that these plugins have to han-

dle portability and cross-browser implementation issues without any direct assistance.

In comparison to plugins, AJAX relies upon only what is provided with modern browsers:

JavaScript, CSS support, and DOM models. There have also been a number of developer

frameworks created to help create AJAX-powered sites [Mesbah, 2008] as well as meth-

odologies for testing AJAX-powered sites [Mesbah, 2009]. Given that no third-party plu-

gins were required and the proliferation of AJAX frameworks, this enabled the

proliferation of rich applications that did not require the user to install any third-party soft-

ware. In fact, the popularity of AJAX has been beneficial to the competitiveness and open-

ness of the Web - as it has restarted the innovation cycle amongst browser developers by

forcing them to optimize their JavaScript and CSS engines [Google, 2008][Gal,

2006][Stachowiak, 2008].

From an architectural perspective, AJAX expands on an area for which REST is deliber-

ately silent—the interpretation environment for delivered content—as content interpreta-

Figure 3.3: Google Maps
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tion and presentation is highly content- and application-specific. However, instead of

running the helper in a different execution environment, AJAX blurs the distinction

between browser and helper by leveraging client-side scripting to download the helper

application dynamically and run it within the browser’s execution environment.

Dynamically downloading the code to the browser moves the computational locus away

from the server. Instead of performing computations solely on the server, some computa-

tions (for example, presentation logic) can now be executed locally. By reducing the com-

putational latency of presentation events, AJAX makes possible a new class of interactive

applications with a degree of responsiveness that may be impossible in purely server-side

implementations.

To illustrates the impact of latency and network traffic of AJAX, let us consider an popu-

lar site for webmail powered by AJAX - Yahoo! Mail depicted in Figure 3.4 on page 121.

A partial representation of the process view representing the interactions between the

user’s browser and the Yahoo! Mail site is depicted in Figure 3.5 on page 123. After suc-

cessfully authenticating with the site, the local browser downloads a series of HTML and

Figure 3.4: Yahoo! Mail - an AJAX application
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JavaScript files. This JavaScript code contains all of the presentation logic and also starts

frequently polling the Yahoo! servers as to whether new mail has arrived. When new mail

arrives, an XML representation of the email is returned to the browser. The browser then

processes that XML representation with the already-retrieved JavaScript code to display

the new message to the user. At no point is the full representation that the user sees on

their local screen transferred together - the presentation code arrives first, and then the

data arrives as needed. Therefore, the important observation is that once the initial AJAX

application is running, the bytes transferred between server and client are simply the min-

imal data necessary to populate the interface. In this way, AJAX amortizes the network

traffic over time by transferring the presentation logic immediately in one burst and then

delays the retrieval data until it is requested. This separation can greatly reduce the load on

the servers as it does not need to combine the data with the presentation layer and send it

to the user, and it also decreases the network latency by minimizing what must be trans-

ferred.

To restate, the architectural innovation of AJAX is the transfer, from server to client, of a

computational context whose execution is “resumed” client-side. Thus, we begin to move

the computational locus away from the server and onto other nodes. REST’s goal was to

reduce server-side state load; in turn, AJAX reduces server-side computational load.

AJAX also improves responsivity since user interactions are interpreted (via client-side

JavaScript) at the client. Thus AJAX, respecting all of the constraints of REST, expands

our notion of resource.
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3.8. Mashups
Mashups, another computation-centric REST-based service, are characterized by the par-

ticipation of at least three distinct entities:

• A web site, the mashup host M

• One or more web sites, c1c2cn, ciM, the content providers

• An execution environment E, usually a client web browser

The mashup host M generates an “active” page P for the execution environment E. P con-

tains references (URLs) to resources maintained by content providers c1c2cn and a set of

client-side scripts in JavaScript. The client-side scripts, executing in E, interpret user

actions and manage access to, and presentation of, the combined representations served by

c1c2cn.

Figure 3.5: Yahoo! Mail process timeline

User logs into mail.yahoo.com

User
mail.yahoo.com

mail.yahoo.com returns HTML
content referring to AJAX JavaScript files

User fetches AJAX JavaScript files

AJAX scripts poll mail.yahoo.com for new mail

User starts to execute AJAX scripts

mail.yahoo.com delivers XML snippet
to AJAX scripts

mail.yahoo.com receives new email

AJAX scripts parse XML snippet

User sees new email in browser
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Mashups where Google Maps is one of the content providers ci are especially popular;

examples include plotting the location of stories from the Associated Press RSS feed

[Young, 2006] (shown in Figure 3.6 on page 124 and an idealized process view shown in

Figure 3.7 on page 1241), and Goggles, a flight simulator [Caswell-Daniels, 2007].

Figure 3.6: AP News + Google Maps Mashup

Figure 3.7: Process view of AP News + Google Maps Mashup

1. It must be noted that the process view is not completely faithful to the actual implementation of 
the mashup. In the actual version, the RSS feeds are pre-parsed and re-packaged by the 
81naussau.com server rather than the client directly fetching from hosted.ap.org.

Browser

http://hosted.ap.org/

http://maps.google.com/

http://81nassau.com/apnews/Fetches Mashup
Javascript

Fetches
Maps

Fetches
Stories
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Mashups offer a fresh perspective on REST intermediaries. Conventionally, an intermedi-

ary intercepts and interprets all request and response traffic between client and server. In

contrast, the mashup host M (the origin server), constructs a virtual “redirection” compris-

ing a set of client-side scripts that reference resources hosted elsewhere at web sites (con-

tent providers) ci, ciM. Thereafter, the client interacts only with the content providers ci.

Thus, mashup host M “synthesizes” a virtual compound resource for the client. Though a

mashup could be implemented entirely server-side by M, it would increase server load and

(for highly interactive mashups) latency. Mashups illustrate both the power of combining

multiple resources under computational control to synthesize a new resource and the ben-

efits of moving the locus of computation away from the origin server.
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CHAPTER 4

CREST: A new model for the architecture of Web-based 
multi-agency applications

We see the web realigning, from applications that are content-centric to applications that

are computation-centric: where delivered content is a “side-effect” of computational

exchange. In a computation-centric web, distribution of service and the composition of

alternative, novel, or higher-order services from established services is the primary goal.

To help further the development of a computation-centric web, we need a new theory to

both explain and guide its future.

4.1. Recap of Lessons Learned
Drawing from the work enumerated in Chapters 2-3, we have the following critical obser-

vations about building web applications from real systems:

• mod_mbox: Resources (as denoted by an URL) can represent more than just static 

content and can refer to various 'representations' generated on-the-fly to suit a particu-

lar domain (in this instance, web-based access to very large mail archives).

• subversion/serf: Decoupling communication and representation transformations inter-

nally within a user-agent's architecture can minimize latency, reduce network traffic, 

and improve support for caching. Also, it is feasible to deploy protocol-level optimiza-

tion strategies that do not conflict with REST or existing protocols (in this case, many 

fewer requests were needed for the same operations). However, extreme care must be 

taken to not violate documented protocol expectations so as not to frustrate intermedi-

aries (such as caching proxies).

• Web Services (SOAP): Offering fine-grained services is unquestionably a noble goal 

as it promotes composition and first-party and third-party innovation. However, due to 

implementation deficiencies (such as lack of idempotency support and improper inter-
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mingling of metadata and data in SOAP messages), SOAP-based Web Services (and 

its sibling 'Service Oriented Architectures') are incapable of realizing the promise of 

fine-grained, composable services without fundamentally violating the REST axioms 

that permitted the web to scale. SOAP-based Web Services, if widely adopted, would 

rollback the scalability improvements introduced with HTTP/1.1.

• Web services (RESTful): A lack of clear design guidance for construction of “REST-

ful” services that are not closely tied to 'content' services (such as adding or removing 

documents) make for often maddeningly inconsistent and incomplete interfaces and, 

even though they handle the bulk of traffic for “web services,” RESTful Web Services 

have yet to reach their full potential.

• Cookies: Even relatively minor alterations to a protocol may grant a 'toehold' to wide-

spread architectural dissonance. The alternatives at the time were not fully articulated; 

therefore, web site designers took the easy (and better articulated through Netscape’s 

developer documentation) approach. This failure violated the statelessness interaction 

axiom of REST and raises inconsistencies with the semantics of the “back” button fea-

tured in today’s browsers.

• AJAX and Mashups: AJAX and mashups illustrate the power of computation, in the 

guise of mobile code (specifically code-on-demand), as a mechanism for framing 

responses as interactive computations (AJAX) or for “synthetic redirection” and ser-

vice composition (mashups). No longer must 'static' content to be transported from an 

origin server to a user agent - we now transfer 'incomplete' representations accompa-

nied by domain-specific computations applied client-side to reify the 'content' with 

which a user interacts. The modern browser has matured into a capable execution 

environment - it can now, without the help of third-party “helpers,” piece together 

XML and interpret JavaScript to produce sophisticated client-side applications which 

are low latency, visually rich, and highly interactive. Additionally, AJAX-based 

“mashups” serve as the computational intermediary (proxy) in an AJAX-centric envi-

ronment.
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4.2. Continuations and Closures
AJAX and mashups both employ a primitive form of mobile code (JavaScript embedded

in HTML resource representations) that expand the range of REST exchanges. However,

far more powerful forms of computational exchange, based on a combination of mobile

code and continuations, are available. A continuation is a snapshot (representation) of the

execution state of a computation such that the computation may be later resumed at the

execution point immediately following the generation of the continuation. Continuations

are a well-known control mechanism in programming language semantics: many lan-

guages, including Scheme, JavaScript, Smalltalk, and Standard ML, implement continua-

tions.

In these programming languages which support continuations, closures are the typical

mechanism by which continuations are defined. Figure 4.1 on page 129 illustrates a clo-

sure in JavaScript. The function closure_example does not directly draw an alert

box, but instead returns a function which draws an alert box. When the closure is evalu-

ated, the user will see a pop-up box as depicted in Figure 4.2 on page 129. More precisely,

a closure is a function with zero or more free variables such that the extent of those vari-

ables is at least as long as the lifespan of the closure itself. If the scope of the free variables

encompasses only the closure then those variables are private to the function (they can not

be accessed elsewhere from other program code) and persist over multiple invocations of

the function (a value established for a variable in one invocation is available in the next

invocation). Consequently, closures retain state (thereby sacrificing referential transpar-

ency) and may be used to implement state encapsulation, representation, and manipula-

tion–the necessary properties for computational exchange powered by continuations.
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4.3. Computational Exchange
We borrow liberally from a rich body of prior work on mobile code and continuations to

articulate our view of computational exchange. An excellent survey and taxonomy of

mobile code systems may be found in [Fuggetta, 1998] and, in particular, there are several

examples of mobile code implementations based on Scheme. Halls' Tubes explores the

role of “higher-order state saving”' (that is, continuations) in distributed systems [Halls,

1997]. Using Scheme as the base language for mobile code, Tubes provides a small set of

primitive operations for transmitting and receiving mobile code among Tubes sites. Tubes

automatically rewrites Scheme programs in continuation-passing style to produce an

implementation-independent representation of continuations acceptable to any Scheme

interpreter or compiler. Halls demonstrates the utility of continuations in implementing

mobile distributed objects, stateless servers, active web content, event-driven location

awareness, and location-aware multimedia.

function closure_example(name) {
  var alert_text = 'Hello ' + name + '!';
  var alert_closure = function() { alert(alert_text); }
  return alert_closure;
}
var v = closure_example('John');
v();

Figure 4.1: An example of a closure in JavaScript

Figure 4.2: The resulting window produced by JavaScript closure in Figure 4.1
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MAST is a Scheme variant for distributed and peer-to-peer programming that introduces

first-class distributed binding environments and distributed continuations (in the spirit of

Tubes) accompanied by a sound security model [Vyzovitis, 2002]. Like Tubes, MAST

also provides primitives for mobility. MAST offers a developer fine-grain network control

while supplying potent control and execution primitives.

Both Tubes and MAST achieve “computation mobility,”' the movement of “live code”

from one network host to another. Other language bases are also feasible. Tarau and Dahl

achieve the same for a logic programming language BinProlog, again employing seri-

alized continuations that are transferred from one host to another and then reconstituted

[Tarau, 2001].

Mobile objects are a weaker form of computation mobility. Scheme appears in this context

as Dreme in pursuit of distributed applications with little concern for process or network

boundaries [Fuchs, 1995]. There, extensions to Scheme include object mobility, network-

addressable objects, object mutability, network-wide garbage collection, and concurrency.

Dreme also includes a distributed graphical user interface that relied upon continuations,

rather than event-driven programming, to manage the interface and respond to user inter-

actions and network events.

Continuations have an important role to play in many forms of web interactions and ser-

vices. For example, Queinnec demonstrates that server-side continuations are an elegant

mechanism to capture and transparently restart the state of ongoing evolving web interac-

tions [Queinnec, 2000]; in other words, server/client interactions are a form of “web com-

putation,” (represented by a program evaluated by the server) for which continuations are
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required to suspend and resume stateful page tours or service-oriented sessions that are

client-parameterized but generated server-side.

Matthews et al. extend this work, offering a set of automated transformations based on

continuation-passing style, lambda lifting, and defunctionalization that serialize the

server-side continuation and embed it in the web page returned to the client [Matthews,

2004]. When the client responds to the web page the (serialized) continuation is returned

to the server where it is “reconstituted,” with the server resuming execution of the contin-

uation. This is an example of computational exchange (from server to client and back

again) that preserves context-free interaction and allows the server to scale by remaining

largely stateless.

Finally, motivated by the richness of web interactions, browsing through data- and deci-

sion-trees, bookmarking, and backtracking, Graunke and Krishnamurthi explore bringing

the same interaction techniques to non-web graphical user interfaces [Graunke, 2002].

They describe transformations, based on the continuation-passing style, that confer the

power and flexibility of web interactions on graphical user interfaces.

4.4. A Computational Exchange Web
To help illustrate the upcoming discussion with concrete examples, we have chosen

Scheme as the language of choice for CREST.1 In this particular computation-centric web,

Scheme is the language of computational exchange and Scheme expressions, closures,

continuations, and binding environments are both the requests and responses exchanged

1.  Yet, it should be made clear that other languages could also suffice - to help 
demonstrate that, in this chapter, we will also illustrate some of the examples 
using JavaScript as well as Scheme.
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over the web. Raising mobile code to the level of a primitive among web peers and

embracing continuations as a principal mechanism of state exchange permits a fresh and

novel restatement of all forms of web services, including serving traditional web content,

and suggests the construction of new services for which no web equivalent now exists.

In the world of computational exchange, an URL now denotes a computational resource.

There, clients issue requests in the form of programs (expressions) e, origin servers evalu-

ate those programs (expressions) e, and the value v of that program (expression) e is the

response returned to the client. That value (response) v may be a primitive value (1,

3.14, or “silly” for example), a list of values (1 3.14 “silly”), a program

(expression), a closure, a continuation, or a binding environment (a set of name/value

pairs and whose values may include (recursively) any of those just enumerated).

With CREST, there are two fundamental mechanisms of operation: remote and spawn.

A remote computation evaluates the given program, closure, or continuation and (if

there is a result) returns the resulting expression (which could be a new program, closure,

or continuation) back to the original requestor. The other mechanism of operation is

spawn, which is intended for installing longer-running custom computations. This mech-

anism allows a peer to install a new service and receive a new URL in response which per-

mits communication with the newly installed service. This new URL can then be shared

and messages can be delivered to the new service with the response wholly under the con-

trol of the newly installed computation.

To help illustrate the semantics of remote, we provide an example program (expression;

rendered in the concrete syntax of Scheme in Figure 4.3 on page 133 and JavaScript in

Figure 4.4 on page 133) issued by a client C to an URL u of origin server S. This program
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tests the execution environment of S for a function word-count (service discovery) and

if the function (service) is available, fetches the HTML representation of the home page of

www.example.com, counts the number of words in that representation (service compo-

sition), and returns that value to C. A diagram reflecting the division of computation

reflected in this program is presented in Figure 4.5 on page 133. As shown by this exam-

ple, in a computational exchange web, the role of SOAP can be reduced to a triviality, ser-

vice discovery is a natural side-effect of execution, and service composition reduces to

program (expression) composition.

(if (defined? 'word-count)

    (word-count (GET “http://www.example.com/”)))

Figure 4.3: Example CREST program (in Scheme)

{
if (wordcount) {
return wordcount(GET(“http://www.example.com/”));

}
}

Figure 4.4: Example CREST program (in JavaScript)

Figure 4.5: Example CREST remote program (computational view)

CREST
peer #1

CREST
peer #2

www.example.com

(if (defined? 'word-count)
(word-count (GET "http://www.example.com/")))

42

GET /

...Lorem 
ipsum...
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An example of a spawn-centric word-count service is provided in Figure 4.6 on

page 134. In this example, the overall computational view remains the same as presented

in Figure 4.5 on page 133, but with a crucial distinction–a new resource (represented by

an URL) now exists, where no such resource existed before, that responds to word-count

requests. In other words, CREST computations synthesize new services out of old by

exposing URLs as computational resources rather than content resources. An example of

(define (word-count-service)
 (accept
  ((reply message-id ('GET url))
   (where (or (symbol? url) (string? url)))
   (! reply message-id (word-count (GET url)))
   (word-count-service))

  (_ (word-count-service)))) ; Ignore other message forms.

Figure 4.6: Example CREST spawn service (in Scheme)

Figure 4.7: Messages exchanged when using spawn-centric service

CREST
Peer #2

CREST
Peer #1

spawn (define word-count-service ...)

crest://peer.example.com/abcd1234
is created and returned to peer #1

send (GET "http://www.example.com/") to
crest://peer.example.com/abcd1234

42
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the sequence of computations and messages that are exchanged to install and use this ser-

vice are presented in Figure 4.7 on page 134.

4.5. CREST Axioms
To provide developers concrete guidance in the implementation and deployment of com-

putational exchange, we offer Computational REST (CREST) as an architectural style to

guide the construction of computational web elements. There are five core CREST axi-

oms:

4.5.1. A resource is a locus of computations, named by an URL. (CA1)
Any computation that can be named can be a resource: word processing or image manipu-

lation, a temporal service (e.g., “the predicted weather in London over the next four

days”), a generated collection of other resources, a simulation of an object (e.g., a space-

craft), and so on. Compared with REST, this axiom is not entirely inconsistent with the

original REST axioms - many REST resources are indeed computation-centric (especially

those presented under the guise of “RESTful Web Services”). However, CREST’s framing

by explicitly emphasizing computation over information makes it far clearer that these are

active resources intended to be discoverable and composable.

Table 4.1: Core CREST axioms

CA1. A resource is a locus of computations, named by an URL.

CA2. The representation of a computation is an expression plus metadata to describe 
the expression.

CA3. All computations are context-free.

CA4. Only a few primitive operations are always available, but additional per-resource 
and per-computation operations are also encouraged.

CA5. The presence of intermediaries is promoted.
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As discussed earlier, when a computational request arrives at an URL, two different

modes of operation are possible: remote or spawn. If the closure is a remote, once the

closure is received, the computation is realized within the context and configuration of the

specific URL. In this way, the URL merely denotes “the place” where the received com-

putation will be evaluated. Until the closure is received, the specified URL can be viewed

as quiescent as there is no computation running but the URL merely presents the possibil-

ity of computation. If the evaluation of the received closure is successful, then any value

(if there is one) returned by the closure on its termination will be sent back to the original

requestor. In this way, remote is the CREST equivalent of HTTP/1.1’s GET. With a

remote closure, there is no provision for communicating with the closure after it is

exchanged. No outside party, including the client who originally submitted the remote

request, can communicate in any way with the remote computation once it has begun

evaluation.

In contrast, if the closure received indicates a spawn, the locus of computation is revealed

in a limited way in that a unique URL is then created to serve as a mailbox for that

spawned computation. For example, Figure 4.8 on page 136 denotes one potential formu-

lation for a mailbox URL whereby the hex string represents a universally unique identifier.

In response to the spawn request, the requestor is returned this URL immediately. This

particular URL may be used by the original requestor or provided to another node for its

own use. With that mailbox URL in hand, any client may now send arbitrary messages to

http://www.example.com/mailbox/60d19902-aac4-4840-aea2-d65ca975e564

Figure 4.8: Example SPAWN mailbox URL
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the spawned closure via the mailbox. The executing closure which was provided with the

initial spawn will read, interpret, and potentially respond to those messages.

4.5.2. The representation of a computation is an expression plus meta-
data to describe the expression. (CA2)
Since the focus of CREST is computational exchange, it is only natural that the represen-

tations exchanged among nodes are amenable to evaluation. In this axiom, we follow

Abelson and Sussman’s definition of expression: “primitive expressions, which represent

the simplest entities the [programming] language is concerned with” [Abelson, 1996].

While these exchanges may be simplistic in form (such as a literal representing static con-

tent or binary data), we expect that more complex expressions will be exchanged - such as

closures, continuations, and binding environments. As discussed earlier in this chapter,

closures and continuations are particularly well-suited for computational exchange as they

are common programming language constructions for state encapsulation and transfer. By

being able to also exchange binding environments (which associate variable names with

their functional definitions or values), complex compositional computations can be easily

exchanged.

CREST can also leverage its particularly active view of computation in order to produce

more precise and useful representations. REST is nominally silent on the forms of

exchanged representations but, to drive the application, implicitly requires the exchanged

representations to be a form of hypermedia. In contrast, CREST relies upon computational

expressions and the exchange of such to drive the application. To produce the appropriate

representation, CREST employs explicit, active computations where REST relies upon a

repertoire of interpreted declarative forms, such as the declared MIME types enumerated
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by a User-Agent. CREST achieves far greater precision when negotiating a representation,

for example, not only can a particular format be specified (such as JPEG) but also specific

resolutions (thumbnails versus full images). This model of content negotiation can simply

not be achieved in REST in a straightforward manner. Exploiting computation directly in

the negotiations reduces its complexity and eliminates the complex parsing and decompo-

sition of representations thereby improving encapsulation, isolation, and composibility.

4.5.3. All computations are context-free. (CA3)
Like REST, CREST applications are not without state, but the style requires that each

interaction contains all of the information necessary to understand the request, indepen-

dent of any requests that may have preceded it. Prior representations can be used to help

facilitate the transfer of state between computations; for example, a continuation (repre-

sentation) provided earlier by a resource can be used to resume a computation at a later

time merely by presenting that continuation. Again, REST has a similar restriction - how-

ever, the mechanism for interactions in a context-free manner was under-specified and

offered little guidance for application developers. By utilizing computational semantics,

continuations provide a relatively straightforward supported mechanism for achieving

context-free computations.

4.5.4. Only a few primitive operations are always available, but addi-
tional per-resource and per-computation operations are also encouraged. 
(CA4)
In HTTP/1.1 - the best known protocol instantiation of REST - the available operations

(methods) of the protocol are documented in the relevant standards documentation (in this

case, RFC 2616). With HTTP/1.1, the server may support additional methods that are not

described in the standards, but there is no discovery mechanism available to interrogate
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the server about which methods are supported on a particular resource. In CREST, since

the node offers base programming language semantics, such discovery mechanisms are

intrinsic and always available.

CREST nodes may define additional operations at a resource-level - that is, there may be

operations (functions or methods) defined locally by the server which are pre-installed and

are optimized for the server’s specific environment. While these operations are exposed

via CREST’s computational model, these operations may actually be implemented in lan-

guages that are not directly amenable to CREST’s computational exchange model (such as

C, Java, or even raw machine code). For example, these locally defined functions may be

front-ends to a proprietary database of credit scores, airline routings, or storehouse inven-

tories. These mechanisms allow a particular provider to expose an optimized or value-

added resources to the CREST nodes.

A critical feature lacking in the HTTP/1.1 protocol is that of two-way extensibility at run-

time - new methods (such as those supported by extensions like WebDAV) can only be

implemented on the server, but, other than implicit agreement or trial and error (handling

the complete absence of a particular method), dynamic protocol adaptation is not feasible

with HTTP/1.1. However, with a CREST-governed protocol - which relies upon providing

a computational platform (in our examples, in the rendered form of Scheme) - protocol

enhancements are merely a form of providing additional computations (such as new func-

tions) on top of the existing computation foundation. Therefore, with CREST, if a specific

method is not available, the participant can then submit the code to the resource which

interprets that method exactly as the participant desires. An example of this dynamic pro-

tocol adaptation is provided in Figure 4.9 on page 140.
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In other words, participant A can send a representation p to URL u hosted by participant B

for interpretation. These p are interpreted in the context of operations defined by u’s spe-

cific binding environment or by new definitions provided by A. The outcome of the inter-

pretation will be a new representation—be it a program, a continuation, or a binding

environment (which itself may contain programs, continuations, or other binding environ-

ments). To reiterate, a common set of primitives (such as the base semantics of the compu-

tational substrate, such as the Scheme primitives) are expected to be exposed for all

CREST resources, but each u’s binding environment may define additional resource-spe-

cific operations and these environments can be further altered dynamically.

Figure 4.9: Example of dynamic protocol adaptation in CREST

CREST
Peer #2

CREST
Peer #1

(defined? 'word-count)

word-count undefined

(define word-count ...)

word-count defined

(word-count (GET "http://www.example.com/"))

42
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4.5.5. The presence of intermediaries is promoted. (CA5)
Filtering or redirection intermediaries may also utilize both the metadata and the computa-

tions within requests or responses to augment, restrict, or modify requests and responses

in a manner that is transparent to both the end user-agent and the origin server. The clear

precursor of the full power of this axiom in a computational exchange web is in AJAX-

based mashups, more fully explained in Section 3.8 on page 123. A derivative of our ear-

lier word count example is given in Figure 4.10 on page 141. In this example, CREST

peer #2 has configured itself to use babelfish.example.com to translate all outgo-

ing requests into Portuguese. CREST peer #1’s code has not changed, but CREST peer

#2’s new configuration alters the computation yielding a different result.

4.6. CREST Considerations
As the REST experience demonstrates, it is insufficient to merely enumerate a set of archi-

tectural principles; concrete design guidance is required as well. To this end, we explore

some of the consequences of the CREST axioms, cautioning that the discussion here is

neither exhaustive nor definitive. Nonetheless, it draws heavily upon both our experiences

Figure 4.10: Word count example with an intermediary

CREST
peer #1

CREST
peer #2

babelfish.example.com

(if (defined? 'word-count)
(word-count (GET "http://www.example.com/")))

50

GET
http://www.example.com/

...Lorem 
ipsum...

(Portuguese)

www.example.com

GET /

...Lorem 
ipsum...
(English)

(set-proxy  
babelfish.example.com)
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as implementors of web services and web clients and the lessons of the analyses of prior

chapters. A summary of the considerations we feel are essential in guiding the application

of the CREST axioms can be found in Table 4.2 on page 142.

4.6.1. Names
CREST can name specific computations (CA1) and exchanges their expressions between

nodes (CA2). In determining how to achieve this exchange, we believe that the most logi-

cal solution is to physically embed the expressions directly in the URL. To go back to our

earlier word count example, the remote request can be constructed as depicted in

Figure 4.11 on page 143. By reusing the existing URL specification and embedding the

computation directly in the URL, CREST provides a mechanism for embedding computa-

tions inside HTML content - allowing an existing user agent (such as Firefox) to interact

successfully (and without its direct knowledge) with a CREST node. This explicitly per-

mits CREST to be incrementally deployed on top of the current Web infrastructure with-

out requiring wholesale alterations or adoption of new technology. To be more precise

about this reuse of the URL format, if a is the ASCII text of a expression e sent by client c

Table 4.2: Summary of CREST Considerations

Names

Services

Time

State

Computation

Transparency

Migration and latency
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to URL P://S/u0//um1/ of origin server S under scheme P then the URL used by c is P://

S/u0//um1/a/.

To be clear, CREST URLs are not intended for human consumption, as they are the base

mechanisms of computational exchange among CREST nodes; human-readable namings

may be provided as needed by higher layers. Among computational nodes, the length of

the URL or its encoding is irrelevant and ample computational and network resources are

readily available among modern nodes to assemble, transmit, and consume URLs that are

tens of megabytes long. In effect, the URL u=P://S/u0//um1/ is the root of an infinite vir-

tual namespace of all possible finite expressions that may be evaluated by the interpreter

denoted by u. Finally u', a moderately compact and host-independent representation of a

computational exchange, may be recorded and archived for reuse at a later point in time

(CA3). One possible compact representation of our word count example is provided in

Figure 4.12 on page 143.

4.6.2. Services
A single service may be exposed through a variety of URLs which offer multiple perspec-

tives on the same computation (CA1). These interfaces may offer a different binding envi-

ronment or offer complementary supervisory functionality such as debugging or

management (CA4). Different binding environments (altering which functions are avail-

able) may be offered at different URLs which represent alternate access mechanisms to

the same underlying computation. We envision that a service provider could offer a tier of

crest://server.example.com/(if(defined?'word-count)(word-count(GET "http://www.yahoo.com/"))

Figure 4.11: CREST URL example (expanded)

crest://server.example.com/word-count/www.yahoo.com/

Figure 4.12: CREST URL example (condensed)
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interfaces to a single service. For instance, a computation that performs image processing

could be exposed as a service. In this hypothetical service offering, a free service interface

is exposed which allows scaling up to a fixed dimensions (up to 1024x768) and conver-

sions into only a small set of image formats (only JPEG and GIF). In addition to this free

service, another interface could be exposed for a fee (protected via suitable access con-

trols) which places no restrictions on the dimensions of the resized image and offers a

wider range of support for various image formats (such as adding RAW or TIFF formats).

In addition, these alternative URLs can be used to perform supervisory tasks for a particu-

lar service. For long running custom computations, as is the intention for spawn, an out-

side party might desire more insight into the progress and state of the computation. The

outside party may also wish to suspend or cancel the computation. In this case, a unique

“supervisory” URL d can be generated by the CREST interpreter in addition to the

spawned computation’s mailbox. Clients can then direct specific remote closures to d

in order to access special debugging and introspection functions. For example, the super-

visory environment can provide current stack traces, reports of memory usage, and func-

tions to monitor communications originating from the computation or messages arriving

at the mailbox. If the environment chooses, it can also expose mechanisms to suspend or

kill the computation. A remote closure delivered to this supervisory URL could then

combine these debugging primitives to produce a snapshot of the spawned computation’s

health. Or, if the supervisory environment supports it, a new spawn closure can be deliv-

ered to d which will automatically kill the computation if the original closure exceeds spe-

cific parameters.
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4.6.3. Time
The nature and specifics of the locus of computation may also vary over time. For exam-

ple, functions may be added to or removed from the binding environment over time or

their semantics may change (CA4). One potential reason for this variation is that a service

provider wishes to optimize the cost of providing the service depending upon the present

computational load. Therefore, in a service representing a complex mathematical function,

a provider can offer a more precise version of a function that uses more CPU time during

off-peak hours. However, during peak hours when overall computational cycles are

scarce, a less precise variant of the function can be deployed which uses less CPU time.

Additionally, the interpreter may change as well for the sake of bug fixes, performance

enhancements, or security-specific improvements.

Functions in the binding environment may also return different values for the same inputs

over time. For example, a random number generator function would be required to vary its

output in successive calls in order to be useful. Yet, there is nothing to prevent a locus

from being stateful if it so desires. A URL representing a page counter computation that

increments on each remote invocation would be stateful. It is important to understand

that the locus, in addition to everything else may be stateful and that state, as well as

everything else, is permitted to change over time.

4.6.4. State
It is vital to note that many distinct computations may be underway simultaneously within

the same resource. A single client may issue multiple remotes or spawns to the same

URL and many distinct clients may do the same simultaneously. While a computational

locus may choose be stateful (and thus permit indirect interactions between different com-
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putations), it is important to also support stateless computations whereby these parallel

computations do not have any influence or effect on any other instance within the same

computational namespace (CA3). With stateless computational loci, independent paral-

lelization of the evaluation is easily available and straightforward.

In order to address scalability concerns with stateful services (such as a database), specific

consistency mechanisms must be introduced to try to regain parallelization. The coarsest-

grained consistency mechanism would be to only allow one evaluation of the stateful ser-

vice at a time as protected by a mutex (akin to the Java synchronized keyword). How-

ever, as discussed in Section 3.4 on page 113, the web as a whole tends to require

optimizing for substantially higher read volumes than write volumes. Therefore, it is pos-

sible to introduce weak consistency models where writes are delayed or processed inde-

pendently in order to permit highly parallelizable read operations [Lamport,

1978][Dubois, 1986][DeCandia, 2007][Chang, 2006].

4.6.5. Computation
REST relies upon an end-user’s navigation of the hypermedia (through the links between

documents) to maintain and drive the state of the overall application. In contrast, CREST

relies upon potentially autonomous computations to exchange and maintain state (CA2,

CA3). Given the compositional semantics offered with CREST, we expect that it will be

common for one resource to refer to another either directly or indirectly. As a conse-

quence, there may be a rich set of stateful relationships among a set of distinct URLs

(CA1). This state will be captured within the continuations that are exchanged between

services. A service provider will be able to give its consumers a continuation that permits

later resumption of the service. In this way, the provider does not have to remember any-
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thing about the consumer as all of the necessary information is embedded inside of the

continuation. As long as the consumer is interested in persisting the stateful relationship, it

needs to merely retain the continuation (embedded in an URL) to let the provider resume

the state of the service at a later date.

4.6.6. Transparency
Since the computational mechanisms are transparently exposed in an URL, the computa-

tion can be inspected, routed, and cached. In this way, intermediaries and proxies are

strongly embraced by CREST (CA5). This allows a service to scale up as needed by shar-

ing network resources; a single origin server may now be dynamically reconstituted as a

cooperative of origin servers and intermediaries (CA3, CA4). A proxy can be interjected

into a request path in order to record all of the computations that are exchanged between

parties. This information can then be examined online or post-mortem to depict traffic

flow analysis. In turn, the intermediary can also do intelligent routing based on just the

URL and status line information. This is in contrast to SOAP routers (discussed in

Section 3.3 on page 110) which require inspecting the request body of the message in

order to determine routing paths. Since the computations are also transparent, they can be

altered by the intermediary. For instance, we envision an intermediary which can convert

search requests against one search vendor’s interface that can dynamically rewrite and

reroute it to use another search vendor’s interface by intelligent deep inspection of the

binding environments.

More importantly, CREST also permits caching of computations to be performed by off-

the-shelf existing caching modules. In particular, remote closures can have their repre-

sentations (evaluation) reused by standard HTTP/1.1 caches. Since all of the computation
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is specified directly in the URL, the cache can then compare the URL against all prior

interactions that it has cached. If the response is permitted to be cacheable (as dictated by

site policy or by the original service provider) and is still fresh according to the specified

expiration parameters, then that prior interaction can be leveraged and returned to the

requestor without contacting the original service provider. This feature permits the grace-

ful introduction of caching into the CREST environment.

4.6.7. Migration and latency
Given the dominance of computation and computational transfer within CREST, applica-

tions should adopt a strategy of minimizing the impact of network and computational

latency. This can best be achieved migrating computations to the place where it offers the

best value. Consumers must be willing to dynamically stitch partial computations from

service providers into a comprehensive whole to obtain desired results, as no one origin

server may be capable of supplying all of the functional capability that the client requires.

As discussed in Section 2.2.2 on page 102, the physical characteristics of the underlying

network connection can have a substantial effect on latency. Recent investigations into

cloud computing services have confirmed that if a computation over a set of data (such as

aggregation or filtering) where the computation processing is physically separated from

the data store (such that the data is located on another continent from where the filtering

occurs), the performance will be dominated and subject to the variations caused by net-

work latency [Palankar, 2008]. To remedy this behavior, CREST easily facilitates the

exchange of the computation to be physically closer to the data store thereby reducing the

impact of latency (CA2). The consumer merely needs to provide the computation to the

data store service which permits the computation and the data to be closer together. For
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computations which reduce the data set to a subset (filtering) or even a single value (such

as a summation), this reduces the latency effects on the overall application dramatically.

With CREST, not only can the computation be moved closer to the data, but the computa-

tion can also be delayed until it is required. For rendering computations (where the data

size increases as an effect of the computation - such as rendering an email message into

HTML), CREST can serve here as well in reducing the impact of latency. As established

by AJAX applications (discussed in Section 3.7 on page 119), computations can be

shipped to a suitably-empowered user agent which reduces the overall latency of the

application by only requiring minimal application-specific data feeds to be retrieved. The

local computations already running within the user agent can then render the data locally.

In order to support these latency mitigation procedures, certain characteristics must be

internally within a specific node as any latencies in-the-large will be reflected in latencies

in-the-small; for example, a client becomes unresponsive while it fetches a resource, or an

intermediary stalls while composing multiple representations from upstream sources.

Therefore, both clients and origin servers must have mechanisms for reducing or hiding

the impact of latency. Clients must be hospitable to concurrent computation and event-

driven reactions (such as the nondeterministic arrival of responses). Since those responses

may be continuations, origin servers, in an analogous manner, must be open to receiving

previously generated continuations long after they were first created (on timespans of sec-

onds to months) and restarting them seamlessly. Time is also fundamental to CREST

nodes as both origin servers and clients require timers to bound waiting for a response or

the completion of a computation. In addition, CREST nodes may employ timestamps and
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cryptographic signatures embedded within a continuation to reliably determine its age and

may refuse to resume continuations that are past their “expiration dates.”

4.7. CREST Architectural Style
Broadly speaking, we can gather these guidelines and considerations together to codify a

new architectural style that expands REST’s concept of state transfer to encompass com-

putational transfer. Just as REST requires transparent state exchange, our new style, Com-

putational REST (CREST), further requires the transparent exchange of computation.

Thus, in the CREST architectural style, the client is no longer merely a presentation agent

for content—it is now an execution environment explicitly supporting computation.
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CHAPTER 5

Revisiting Dissonance with CREST

As discussed earlier in Chapter 2 starting on page 96, REST has proven difficult to apply

even for those who are well-versed in the style. Chapter 3 starting on page 108 discusses

how recent emergent architectures and applications on the Web are poorly explained

solely by REST. Chapter 4 starting on page 126 introduces the CREST architectural style

which aims to help developers consistent gain the benefits promised by REST. In order to

properly assess the utility of CREST, we explore how well CREST retrospectively

explains the systems introduced in Chapter 2 and Chapter 3.

5.1. Explaining mod_mbox
Names. As highlighted in Section 2.1 on page 96, mod_mbox took specific care in craft-

ing its exposed namespace (CA1). Instead of exposing storage details in the namespace as

other archivers did, mod_mbox only exposed content-specific metadata: the Message-ID

header. This level of indirection shielded the web-level namespaces from irrelevant imple-

mentation decisions made at a lower level - such as the choice of backing database or mes-

sage arrival sequences.

Services.  In addition to retrieving specific messages, mod_mbox also added several

resource-specific functions such as dynamic indexing and sorting of the archive (CA4).

By specifying service names in the URL (CA1), mod_mbox would sort the archive index

by author, date, or thread.
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Time. One of the scaling challenges with mail archives is how to keep up with a steady

stream of new messages entering the archive. As discussed previously, other archival sys-

tems would regenerate the index and all of the representations whenever any new message

is received. This style of processing becomes unsuitable for high-volume archives as the

re-generation would essentially degrade into a constantly never-ending process. There-

fore, in contrast to other archivers, mod_mbox chose to delay the creation of index and

message representations until it is requested by a user. This permitted mod_mbox to scale

and handle time in a domain-appropriate manner.

Migration and latency. By being flexible about the creation of message representation

formats, mod_mbox was able to later evolve gracefully as subsequent development added

an AJAX presentation interface to the archive. Again, instead of creating all of the neces-

sary representations at indexing time, mod_mbox could simply dynamically expose a

new namespace and representation format suitable for AJAX-capable clients (CA2, CA3).

Instead of rendering the message or index entirely into HTML on the server, we were able

to trivially shift that rendering to the browser by delivering JavaScript to control the ren-

dering client-side with the mail messages formatted into XML whenever an AJAX-capa-

ble client requested it. This migration also reduced latency considerations as less data had

to be transferred between server and client and led to a more responsive application.

5.2. Explaining Subversion
Migration and latency. As discussed in Section 2.2 on page 98, Subversion initially suf-

fered from network latency issues. With the explanatory powers of CREST, we view the

first attempt to solve this latency issue (performing, on the server, the aggregation of
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resources to check out) as moving the computational locus back from the client to the

server. Unfortunately, while addressing the initial latency issue, this only served to

increase the overall computational load on the server and made it such that simple inter-

mediaries could not be deployed to reduce load. But, with considered changes to the cli-

ent’s framework, consistent with latency reduction, we could repair the deficiencies. A

new client was deployed that addressed the issues of latency through independent trans-

formational elements (buckets) and asynchronous network calls. Hence, the computational

locus (the aggregation of resources to check out) could rightfully return to the client. The

server’s load is thereby lessened and intermediaries can be redeployed.

Naming and Transparency. We can see that Subversion dealt with the naming concern in

a very straightforward manner with one glaring exception which had a dramatic impact on

the transparency of the overall system. All of the necessary parameters to identify a unique

piece of content was exposed directly in the URL (CA1) - such as /path/to/repos/

!svn/ver/1234/foo/bar/baz. This transparency makes it relatively straightfor-

ward to leverage caching mechanisms. However, as discussed earlier, the usage of Web-

DAV’s REPORT method hid the real computational request inside the request body rather

than the exposing it directly in the URL or using the HTTP/1.1 method field. This lack of

transparency makes it impossible to intelligently and simplistically route and cache any

requests using REPORT. Unfortunately, while its usage has been minimized through the

changes discussed here, the REPORT method is still used within Subversion for checkout

and update operations.
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5.3. Explaining Web Services
Services. by using a well-defined binding environment (CA4) and continuations (CA3),

CREST provides more substantial design guidance on how to create arbitrary dynamic

services that are flexible and content independent. For instance, for a service that may

return a large number of results (such as a list of all live auctions), the exchange of contin-

uations (as generators) is more natural, responsive, and elegant than building pagination

and chunking explicitly into the interface. On each round i the service S may return a

ordered pair (ai,Ci) where:

• ai = (ai,0, . . . , ai,mi) is a list of the representations of the next mi out of n total live 

auctions and

• Ci is the continuation that, when returned to S at sometime in the future, will generate 

the next set of (ai+1,0, . . . , ai+1,mi+1) live auction representations.

Note that continuation Ci need not be returned to the origin server immediately; many sec-

onds or minutes may pass before the client returns the continuation for the next round of

exchange. This allows the client to pace its consumption of the results, a freedom that pag-

ination and chunking do not provide. Further, the client may pass a continuation Ci onto

one or more fellow clients for other purposes; for example, parallel searching for auctions

with particular items for sale.

Naming and Transparency. One major deficiency of SOAP-based Web Services is the

improper intermingling of metadata and data in SOAP messages. From a naming perspec-

tive (contrary to CA1), the identification of the SOAP service to be invoked is hidden

inside the data of the HTTP request body typically encoded inside of XML. Therefore, all

routing decisions (if even offered) are necessarily very inefficient due to the parsing and
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inspecting of the entire request body. Due to this intrinsic inefficiency, SOAP-based inter-

mediaries are uncommon.

Migration and latency. SOAP-based services do not expose any primitive compositional

functionality to consumers (CA4). This absence has a deletory effect on the offering of

fine-grained web services as SOAP-based services tend to be rather coarse-grained to

overcome this deficiency. Without compositional semantics, it is not possible to remotely

combine the result of a SOAP service and compose it with another remote SOAP service

without undue exposure to the network latency conditions. Therefore, SOAP-based web

services must offer a separate distinct service representing the hard-wired functional com-

position of the underlying services. Therefore, the consumer’s compositional abilities are

restricted to whatever combinations are offered by the service provider or suffer the

effects of network latency when trying to do the service composition locally.

5.4. Explaining Cookies
State. Under CREST, cookies are now reinterpreted as a weak form of continuation

(CA2). When a client wants to resume the transaction represented by the cookie (continu-

ation), it simply returns the last cookie (continuation) to the server. The key distinction

under CREST is that cookies (continuations) are bound to a specific, time-ordered, request

sequence. A full continuation is, by definition, bound to a particular sequence of resource

access; there is no ambiguity server-side. Thus the continuation restarts resource access at

a particular known point in the sequence of all resource accesses (CA2, CA3). This stands

in sharp contrast to the current use of cookies—generic tokens to all subsequent server

requests.
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Time. Cookies are also currently presented with an explicit expiration date (in practice,

many sites set their cookies to the latest expiration time supported by 32-bit platforms:

January 19, 2038 [Microsoft Corporation, 2006]). However, in CREST, no such expiration

date must be supplied (though it may, at the discretion of the origin server) as the continu-

ation itself contains all of the necessary state to resume the dialog of exchange. Finally,

continuations, like cookies, can be hardened against tampering using digital signatures or

even encryption to prevent security or service attacks (CA2).

5.5. Explaining AJAX and Mashups
Migration and latency. From the CREST perspective, mashups are nothing more than a

closure (CA2) that makes reference to resources on multiple web sites w1, w2, . . . , wn.

Note that for CREST, there is no requirement that a web browser be the execution envi-

ronment for the mashup. By using CREST, we can predict two future elaborations of

mashups. A derived mashup is one in which one or more content provider web sites wi are

themselves mashups—with the lower-level mashups of the wi executing on an intermedi-

ary (CA5) rather than a browser. CREST also speaks to a future web populated by higher-

order mashups. Similar to a higher-order function in lambda calculus, a higher-order

mashup is a mashup that accepts one or more mashups as input and/or outputs a mashup

(CA2). This suggests a formal system of web calculus, by which web-like servers, clients,

and peers may be cast as the application of identifiable, well-understand, combinators to

the primitive values, functions, and terms of a given semantic domain. Thus, CREST hints

at the existence of future formalisms suitable for the proof of REST and CREST proper-

ties.
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5.6. Evaluation
How are we to evaluate the validity of CREST as an explanatory model of modern and

emerging web behavior?

First, note that REST is silent on many issues of architectural mismatch, repeatedly

neglects to offer explicit design guidance, lacks a bright line separating REST-feasible

web services from those that are not, fails to predict novel services that are consistent with

REST principles and is frequently silent on many issues of web behavior. In each of these

cases, CREST fills the gap and provides detailed guidance and explanations where none

existed previously.

This is particularly acute in the case of SOAP and web services. Why are developers so

focused on ignoring REST constraints for the sake of web services? Developers are strug-

gling toward service interactions far finer-grained than fetching hypermedia content. But,

absent a comprehensive computational model, the only mechanism even remotely sug-

gested by REST is parameterized request/response that relies on the ill-suited semantics of

the GET and POST methods of HTTP. CREST tackles the problem directly, since content

exchange is nothing but a side-effect of its primary focus: computational exchange. Fur-

ther, it demonstrates why SOAP and the tower of web service standards and protocols

stacked above it utterly fail; computational exchange requires the full semantics of power-

ful programming languages: conditionals, loops, recursion, binding environments, func-

tions, closures, and continuations, to name only a few. Without these tools, web service

developers are condemned to recapitulate the evolution of programming languages.

CREST identifies the precise reasons why the evolution to web services is so difficult,

pinpoints the mechanisms that must be applied to achieve progress, and offers detailed
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architectural and design guidance for the construction of service-friendly servers and cli-

ents. Thus, CREST offers guidance where REST and all others have failed so far. In future

work, we intend to apply CREST to the entire spectrum of web services—recasting all

major elements of the web services protocol stack in the light of computational

exchange—as well as address other outstanding problems in web behavior, including con-

tent negotiation and effective caching in service-oriented architectures.
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CHAPTER 6

CREST Framework and Experience

To both facilitate the adoption of CREST and to explore the implications and conse-

quences of the style, we have constructed a CREST framework that allows us to build

applications in this style. Our framework has two classes of peers: exemplary peers and

weak peers. As depicted in Figure 6.6 on page 163, exemplary peers are standalone serv-

ers that have a rich set of computational services available. These exemplary peers utilize

Scheme as the language in which the computations are written. In order to assist and

expose third-party libraries, our Scheme implementation is written on top of Java [Miller,

2003] - so any Java frameworks are accessible from the exemplary peer. To foster interop-

erability with the existing Web, these exemplary peers can act as a HTTP/1.1 server (to

expose the computations running on that peer to browsers) as well as an HTTP/1.1 client

(to permit the local computations on that peer to fetch resources on a HTTP/1.1 server or

another remote peer). On a modern Intel-class laptop with minimal performance tuning,

our exemplary peers can serve dynamic computations in excess of 200 requests per sec-

ond. In contrast to exemplary peers, weak peers (depicted in Figure 6.5 on page 163) are

confined to the restrictions of a modern Web browser and rely upon JavaScript as the fun-

damental computational foundation. For ease of development and portability for our weak

peers, our example applications use the Dojo JavaScript framework. Supported browsers

include Mozilla Firefox, Safari, Google Chrome, and Internet Explorer. Mobile devices

such as an Apple iPhone and Google Android phone are also supported as weak peers

(through their built-in browser applications.)
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6.1. Example Application: Feed Reader
Our example application is a is a highly dynamic, re-configurable feed reader that con-

sumes RSS or Atom feeds. For purposes of comparison, Google Reader or Bloglines may

be considered as a starting reference point - however, our application has a much stronger

computational and compositional aspect than either system offers today. In addition to

merely displaying a feed, one such novel functionality present is that a user can dynami-

cally link the feeds to a tag cloud to display the most popular words in the feed. A screen-

shot of the running application is presented in Figure 6.1 on page 160. A view of the

computation models presented by our feed reader is seen in Figure 6.4 on page 162.   

In our example, there are two separate classes of computations that are occurring: the wid-

get computations running on the exemplary peers, and the artist computations running on

Figure 6.1: Screenshot of CREST-based Feed Reader application
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the weak peers. An overview of the run-time architecture is provided in Figure 6.2 on

page 161. There are eight different widgets: a manager (which allows a user, via a weak

peer, to create and link widgets), an URL selector, an RSS reader, tag clouds, sparklines, a

Figure 6.2: Feed Reader Architecture

Figure 6.3: Feed Reader Computations (overview)
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calendar, a Google News reader, and a QR code (a 2D barcode format). Via a manager

widget, these widgets can be linked together - such as the URL selector linking to the RSS

reader, indicating that the reader should fetch its feed from a specific URL. Each one of

these widget computations may have an associated artist computation which is responsible

for visually rendering the state of the widget in a weak peer (such as a browser). In our

example, the artists and widgets communicate via exchanging JSON over HTTP - more

sophisticated computational exchanges (such as full closure and continuations) are com-

monly employed among exemplary peers. There does not have to be a one-to-one relation-

ship between artist and widgets - in our example, a manager widget has two separate

artists - one which lets the user add new widgets and another artist (the mirror) which

visually depicts the entire state of the application using boxes, arrows, and color. 

Using our CREST framework, all eight of our widgets total under 450 lines of Scheme

code - the largest widget is the feed reader widget computation which is approximately

Figure 6.4: Feed Reader Computations (detail)
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115 lines of code.1 All of our artists are written on top of the Dojo JavaScript framework

and comprise approximately 1,000 lines of JavaScript and HTML.

6.2. Design Considerations: Feed Reader
Using the considerations presented in Section 4.6 on page 141 as our guide, we now dis-

cuss their impact and how they manifest themselves in our demonstration example.

Names. Each instantiation of a widget computation has its own unique per-instance URL.

Through this URL, artist computations running in the confines of a week peer or another

Figure 6.5: Weak CREST Peer

Figure 6.6: Exemplary CREST Peer
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widget computation on the same or different peer can deliver a message to a specific wid-

get computation. These messages can either fetch the current state of the computation via

a GET request (such as to retrieve the current tag cloud data) or update the state of the

computation via a POST request (in order to deliver a new set of words to the tag cloud).

Within the weak peer, artist computations have unique identifiers within the local DOM

tree of the browser. However, these weak peers are restricted to only communicating with

exemplary peers and can not expose any services or directly interact with other weak

peers.

Services. Both the widget and artist computations in our example application are indepen-

dently managed and run. Each widget computation locally defines what services it pro-

vides - such as the URL widget component permitting the storing and retrieval of the

current value (in this case, a feed URL). In contrast, the widget manager computation

offers the ability to spawn new widgets as well as maintaining information about already

instantiated widgets.

It should also be noted that multiple artist computations may offer different perspectives

on the same service. In our example, both the mirror and manager artist computations pro-

vide alternative views of the current state of the system (one as a list of existing widget

computations, the other as a graphical representation of the existing computations).

Time. Over time, the computations offered by the example application will vary. The

computations are not defined, created, or even initialized until they are explicitly activated

by the manager widget. Additionally, there is a set of relationships between widget com-

putations (links) that are created and destroyed over time. In our example, this set of rela-
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tionship determines the data flow from one widget computation to another widget

computation.

State. In our example application, the widget computations have the ability to maintain a

local per-instance state. Our feed reader widget computation will retrieve and parse the

designated feed on a periodic basis as defined by a clock-tick. The feed reader widget

computation will then store the parsed feed as a local stateful value. By maintaining the

state (essentially caching the parsed feed), the feed reader widget can easily scale since it

must only return the cached representation rather than constantly retrieving and parsing

the feed in response to a given request. In contrast to the widget computations, our artist

computations are all stateless. The artist computations are configured to periodically poll

their affiliated widget computation for its state and then renders that state accordingly.

Computation. The artist computation’s responsibility is to (visually) render the state of its

affiliated widget computation into a specific form. The widget computations executing on

the exemplary peer have no restrictions on what they can compute modulo security impli-

cations as discussed in Section 6.3 on page 167. Through the use of links between widget

computations, dynamic composibility of services is supported. For instance, the Google

News widget can be dynamically linked to the calendar and tag cloud widget computa-

tions in order to search for a given keyword (from the tag cloud) at a given date in the past

(from the calendar).

Transparency. The demonstration supports varying degrees of computational exchange,

namely “shallow” copy versus “deep” copy. In a shallow copy, all weak peers share

among themselves a single collection of widget computations (perhaps distributed among

multiple exemplary peers) but have independent artist computations. In this case, all weak
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peers see exactly the same state updates for the same widget computations. Under deep

copy, a new weak peer creates a fresh, forked collection of widget computations whose

computational states are a continuation, captured at the instant of the join, of the parent

collection. This weak peer will now observe, from that point forward, an independent,

evolving state. In this way, the deep copy creates a new version of the feed reader applica-

tion at the time the continuation is created.

Interestingly, due to the accelerated timeframes of our example application (feeds were

updated every three seconds), we had to introduce cache-busting parameters in our artist

computations on the Google Android phones because of the browser’s aggressive caching

behavior.

Migration and latency. Since all relationships between computations are identified by a

URL, these computations may either be remote or local. In this way, widget computations

can be migrated with abandon as long as they are accessible via an URL. By adding multi-

ple exemplary peers, dynamic widget migration and load sharing (computational

exchange) allows the sample application to scale seamlessly.

With regards to latency, the division between artist computations (which draw the local

display) and the widget computation (which maintains the state) allows for minimal trans-

ference of data between nodes. Upon creation of the widget computation, the relevant art-

ist computation is transferred and instantiated on the weak peer. Therefore, by providing

the artist computation as an output of the widget computation, the widget computation has

complete control over what formats the artist computation require and can hence use any

optimized format that it desires.
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6.3. Additional Related Work
Web Services impose a service perspective on large-scale web systems, however, its flaws

are numerous and fundamental including inappropriate service granularity [Stamos,

1990], an unsuitable invocation mechanism [Waldo, 1994], and intermingling of data and

metadata causing high latency [Davis, 2002]. Google Wave [Lassen, 2009] employs a

classic client/server architecture for which the medium of exchange is XML documents

and state deltas encoded as operational transforms. CREST resembles a web-scale actor

model [Baker, 1977] and like [Ghosh, 2009] exploits a functional language as the imple-

mentation medium for its actor-like semantics. The demonstration sketched above resem-

bles Yahoo Pipes [Yahoo Inc., 2009] or Marmite [Wong, 2007] however, unlike these

systems, all significant computation is distributed outside the browser in CREST peers

and within the browser the only computation is for the sake of rendering.

Security is a significant issue for mobile code systems and several distinct mechanisms are

relevant for CREST. Strong authentication is a vital starting point for trust, resource allo-

cation, and session management and for which we will employ self-certifying URLs

[Kaminsky, 1999]. Mechanisms for resource restriction, such as memory caps and proces-

sor and network throttling, are well-known, however, environment sculpting [Vyzovitis,

2002] may be used to restrict access to dangerous functions by visiting computations and

is the functional analog of the capability restriction in Caja [Miller, 2008]. In addition,

since an exemplary peer executes atop the Java Virtual Machine, all of the security and

safety mechanisms of the JVM may be brought to bear. Finally, CREST exemplary peers

will employ byte code verifiers for remote and spawn computations and various forms of
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law-governed interaction [Minsky, 2000] to monitor and constrain the behavior of collec-

tions of computations executing internet-wide on multiple peers.
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CHAPTER 7

Conclusion

7.1. Recap / Summary
Research Question. Throughout this dissertation, we can phrase our motivating question

as: What happens when dynamism is introduced into the Web? In this characterization, we

define dynamism as phenomena that must be explained as a manifestation of change,

whether through interpretation or alteration of the interpreter. As we discover through our

investigations of this question in this dissertation, we ultimately find that the underlying

architecture of the Web shifts, from a focus on the exchange of static content to the

exchange of active computations.

CREST Architectural Style. In order to support this shift, we construct a new architec-

tural style called CREST (Computational REST). As discussed in much more detail in

Chapter 4 starting on page 126, there are five core CREST axioms:

• CA1. A resource is a locus of computations, named by an URL.

• CA2. The representation of a computation is an expression plus metadata to describe 

the expression.

• CA3. All computations are context-free.

• CA4. Only a few primitive operations are always available, but additional per-resource 

and per-computation operations are also encouraged.

• CA5. The presence of intermediaries is promoted.

CREST Considerations. We also encounter several recurring themes that must be

addressed by a computation-centric Web and are related to the axioms above:
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• Computations and their expressions are explicitly named. (CA1, CA2)

• Services may be exposed through a variety of URLs which offer perspectives on the 

same computation. (CA1); interfaces may offer complementary supervisory function-

ality such as debugging or management. (CA4)

• Functions may be added to or removed from the binding environment over time or 

their semantics may change. (CA4)

• Computational loci may be stateful (and thus permit indirect interactions between 

computations), but must also support stateless computations. (CA3)

• Potentially autonomous computations exchange and maintain state (CA2, CA3); A 

rich set of stateful relationships exist among a set of distinct URLs. (CA1)

• The computation is transparent and can be inspected, routed, and cached. (CA5)

• The migration of the computation to be physically closer to the data store is supported 

thereby reducing the impact of network latency. (CA2)

These themes were discussed in more detail in Chapter 4 starting on page 126.

CREST Framework. To both facilitate the adoption of CREST and to explore the impli-

cations and consequences of the style, we have constructed a CREST framework (dis-

cussed in detail in Chapter 6 starting on page 159) that allows us to build applications in

this style. Utilizing this framework, we have constructed a feed reader application which

offers novel computational and compositional aspects.

Contributions. In summary, this dissertation provides the following contributions:

• analysis of the essential architectural decisions of the World Wide Web, followed by 

generalization, opens up an entirely new space of decentralized, Internet-based appli-

cations
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• recasting the web as a mechanism for computational exchange instead of content 

exchange

• a new architectural style to support this recasting (CREST)

• demonstrating how CREST better explains architectural dissonance

• a framework for building applications backed by CREST

7.2. Future Work
The implementation framework, described in Chapter 6 starting on page 159, upon which

the sample application (a feed reader) was built is generic, is fully backwards compatible

with the existing Web infrastructure, and will be the basis for our next phase of investiga-

tion with CREST.  We anticipate examining how this computational web can be used to

solve problems in other areas, ranging from the smart energy grid to situational awareness

to high-speed streaming video applications.  In addition to these application-based studies,

we anticipate investigations into numerous support areas, including development and test-

ing techniques and tools, implementation of the security elements, and provision of ser-

vices for computation search and composition.  In the following section, we explore one

particular area deserving future exploration: recombinant web services powered by

CREST.

7.3. Future Work: Recombinant Web Services
Based upon our prior observations of the current landscape of web services (either SOAP

or REST-based), we are convinced that the future evolution of the Web will continue to

embrace services as a necessary fundamental element of the web. However, the current

form of web services (as described in Chapter 3 starting on page 108) is inadequate to
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meet these challenges. We believe that CREST can play a vital role in guiding the creation

of a new generation of web services. We will call these new services “recombinant” and

define them by the following properties:

• Loose coupling with logical separation of the service vendor and the service consumer. 

The coupling between the two is limited to a remotely accessible, narrowly exposed 

interface.

• Composition, both within the boundary of a single vendor and among distinct vendors. 

Services may be offered that are themselves amalgams of lower-order services.

• Reuse, with a single service capable of use by many consumers for many purposes.

• Autonomy, the extent to which the functional behavior and performance of service is 

independent of other services, either local or remote, and the span of authority of the 

service vendor.

• Context-free exchanges, reducing to zero the degree to which the service is required to 

retain state or history of prior interactions.

• Monitoring, to observe, record, and analyze detailed service behavior across multiple 

service vendors simultaneously at any time from any location.

7.3.1. CREST properties for recombinant services
In order to achieve these recombinant services, we can look towards CREST to provide

some design guidance. We find four properties that CREST can deliver which are vital to

the success of these recombinant services: fluid locus of computation, local composition of

computation, easy trading of computation, and free migration of computation.

Fluid locus of computation. Since CREST supports the transfer of computation, there is

no guarantee that an origin server to which a client issued a request (computation) will be
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the eventual responder, since the server may choose to delegate the completion of the

computation to a third-party. The locus of computation is therefore fluid; there is no fixed

relationship between request and response since one request may generate zero, one, or

many responses and, in the latter case, from many distinct servers.

Local composition of computation. In CREST, the available functional substrate offered

by a specific node can be remarkably fine-grained with rich dynamic compositional capa-

bilities. Composition of computations, say g(f(x)), can synthesize a final result from inter-

mediate CREST computations—a sharp contrast to Web Services which offer no local

compositional logic. With CREST, this composition is both dynamic and local and uses

common programming language primitives. Similarly, a CREST client can stitch partial

computations from origin servers into a comprehensive whole as no one origin server may

be able to supply all of the functional capability that the client requires.

Easy trading of computation. Under CREST URLs name specific computations—in the

near-literal sense that the entirety of the computation is embedded in the URL. Therefore,

if an individual wants to share a computation, exchanging URLs is sufficient. Moreover,

this trading of computations can be done programmatically and across agency borders.

Free migration of computation. CREST servers can be easily synthesized or decom-

posed as physical or agency constraints warrant. A logical origin server may be dynami-

cally reconstituted as a physical cooperative of servers with portions of the computation

divided and delegated among many CREST peers. For example, certain functions, such as

highly complex mathematical operations, can be delegated to special-purpose CREST

servers (which possess optimized libraries or dedicated co-processors) to produce interme-

diate computations. Alternatively, CREST servers can act as intelligent load-balancers
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directing requests based on traffic analysis. There is no requirement that such delegation

must remain within a single agency sphere. An operator of a CREST service could con-

tract with a third-party to perform specific portions of the computation unbeknownst to

any one that uses its resources.
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Appendix B: Selected Feed Reader Widget Source Code

Source Code: Manager Widget
(define (thunk/manager)
  (define (widget-list key value) (hashtable->alist value))

  (define (widget-spawn title)
    (cond ((string-ci=? "RSS Reader" title) (peer/spawn (this-peer) thunk/rss-feed))
          ((string-ci=? "Tag Cloud" title) (peer/spawn (this-peer) thunk/tagcloud))
          ((string-ci=? "QR Code" title) (peer/spawn (this-peer) thunk/qrcode))
          ;((string-ci=? "Mirror" title) (peer/spawn thunk/mirror))
          ((string-ci=? "URL Selector" title) (peer/spawn (this-peer) thunk/urlsel))
          ((string-ci=? "Sparkline" title) (peer/spawn (this-peer) thunk/sparkline))
          ((string-ci=? "Calendar" title) (peer/spawn (this-peer) thunk/calendar))
          ((string-ci=? "Google News" title) (peer/spawn (this-peer) thunk/google-news))
          (else "")
    )
  )
  (let ((widgets-data (make-hashtable string-ci=?))
        (widgets-mbox (make-hashtable string-ci=?))
        (linkid 0))
    (display "thunk/manager: ready to serve\n") 
    (let loop ((m (? (this-mailbox))))
      ;(display (format "thunk/manager: path:~a body:~a\n" (:message/path m) (:message/body 
m)))
      (match
       (message/path+body m)

       (#(/http/get #(,origin ,uri ,request ,response))
        (let* (
           (req-uri (uri/path uri)))
         (cond ((string-suffix-ci? "/maps" req-uri)
          (http/response/entity! response (json/string (list (cons 'items (list->vec-
tor(hashtable/map widget-list widgets-data)))))))
               (else (display (format "Unknown URI: ~s" req-uri))))
        (! (:message/reply m) response :no-metadata: #f (:message/echo m))))

       (#(/http/post #(,origin ,uri ,req-body))
        (display (format "thunk/manager: body:~a\n" req-body))
        (let* (
          (req-uri (uri/path uri))
          (req-val (json/translate req-body)))
         (cond ((string-suffix-ci? "/create" req-uri)
                (let* ((table (make-hashtable string-ci=?)))
                  (for-each (lambda (v) (hashtable/put! table (car v) (cdr v))) req-val)
                  (let* ((wid (hashtable/get table "id"))
                         (title (hashtable/get table "title"))
                         (wid-uuid (widget-spawn title))
                         (wid-mbox (peer/mailbox (this-peer) wid-uuid))
                         (type-url (format "/mailbox/~a" wid-uuid)))
                  (hashtable/put! table "url" type-url)
                  (hashtable/put! widgets-mbox wid wid-mbox)
                  (hashtable/put! widgets-data wid table))
                ))
               ((string-suffix-ci? "/link" req-uri)
                (let* ((table (make-hashtable string-ci=?)))
                  (for-each (lambda (v) (hashtable/put! table (car v) (cdr v))) req-val)
                  (hashtable/put! widgets-data (string-join (list "link" (number->string 
linkid))) table)
                  (set! linkid (+ linkid 1))
                  (let* ((from-wid (hashtable/get table "from"))
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                         (to-wid (hashtable/get table "to"))
                         (from-mbox (hashtable/get widgets-mbox from-wid))
                         (to-mbox (hashtable/get widgets-mbox to-wid)))
                    (! (@ from-mbox 'link/create) to-mbox)
                  )
                ))
               ((string-suffix-ci? "/move" req-uri)
                (let* ((table (make-hashtable string-ci=?)))
                  (for-each (lambda (v) (hashtable/put! table (car v) (cdr v))) req-val)
                  (let* ((wid (hashtable/get table "id"))
                         (cur-val (hashtable/get widgets-data wid)))
                  (define (widget-list-update k v)
                          (hashtable/put! cur-val k v)
                  )
                  (hashtable/for-each widget-list-update table)
                ))
               )
               (else (display (format "Unknown URI: ~s" req-url))))
         ))

        (,_ignore #f))

      (loop (? (this-mailbox)))))
)
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Source Code: Tagcloud Widget
(define (thunk/tagcloud)

  (define (alist-filter list filter)
   (let loop ((pairs list) (outcome '()))
   (cond
     ((null? pairs) outcome)
      (else
       (if (filter (car pairs))
         (loop (cdr pairs) (cons (car pairs) outcome))
         (loop (cdr pairs) outcome))))))

  (define (topwc s wordlen count)
    (alist-filter s (lambda (x)
      (and (>= (string-length (car x)) wordlen) (>= (cdr x) count)))))

  (define (generate-wordcount s l c)
    (let* ((hp (htmlparser/parse s))
           (ht (htmlparser/get-text hp))
           (wc (wordcount/list ht))
         )
    (topwc wc l c)
   )
  )

  (define (nc-map e) (list (cons 'name (car e)) (cons 'count (cdr e))))
  (let ((current-json #f)
        (current-text #f)
        (links '()))
    (let loop ((m (? (this-mailbox))))
      (match
       (message/path+body m)

       (#(link/create ,mailbox)
        (set! links (cons mailbox links))
        (! (@ mailbox 'link/data) current-text "text"))

       (#(link/data ,s)
        (set! current-text (generate-wordcount s 4 3))
        (set! current-json (json/string (list (cons 'items (list->vector (map nc-map cur-
rent-text))))))
        (for-each (lambda (link) (! (@ link 'link/data) current-text "text")) links)
        )

       (#(/http/get #(,origin ,uri ,request ,response))
        (cond
          (current-json
            (http/response/entity! response current-json))
          (else
            (http/response/status! response 404)
            (http/response/entity! response "Not Found")))
        (! (:message/reply m) response :no-metadata: #f (:message/echo m)))
      )

      (loop (? (this-mailbox)))))
)
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