
Release Management Within Open Source Projects

Institute for Software Research
University of California, Irvine

Irvine, CA 92697-3425
jerenkra@ics.uci.edu

Justin R. Erenkrantz

1

Abstract
A simple classification system for release management prac-
tices is presented. When applied to a set of projects, in this case
a set of open source projects, distinctive practices are high-
lighted and relative strengths can be assessed. Three projects
are studied, the Linux kernel, Subversion, and the Apache
HTTP server. Their release practices, as portrayed by the clas-
sification system, emerge as a complex combination of subpro-
cesses and tools chosen to support specific project goals and
properties. Through application of this classification, we iden-
tify areas of weaknesses in the projects' release management
processes and conclude with an overview of potential improve-
ments to the processes and tools that can be made.

1. Introduction

An important aspect of open source projects is conducting a
release. While the source code is freely available and usually
developed in an open manner, the ratio of users may greatly
exceed the number of useful developers[3]. Therefore, an open
source project may need to package their software in a way that
is conducive to attracting non-technical users.

We will identify release management by the processes and
tools used to package the software for public consumption.
Some projects may place expectations on developers to have
certain tools available or understand how the development pro-
cess works. However, when creating a release for a greater audi-
ence, these same expectations may not apply. For example,
users of a web server may not be interested in how the web
server functions. They may only be concerned with whether it
meets their requirements.

The state of release management guidelines in open source
projects has been remarkably informal so far. It may be difficult
to get a clear picture of how a project conducts its releases. The
processes and tools may only be evident by their side effects
rather than a direct statement of the process. This presents a sig-
nificant challenge to understanding release management and
improving the processes and tools for open source projects.

2. Taxonomy

To help understand release management policies, we intro-
duce a taxonomy for identifying common properties of release
management across open source projects. The characteristics as
presented in this paper are: release authority, versioning, pre-
release testing, approval of releases, distribution, and formats.

2.1. Release Authority

A release is usually accompanied by the presence of a coor-
dinating authority. This coordinator is commonly identified as
the release manager. The release manager has the responsibility
for conducting the release. The release manager may also have
final authority over what makes it into a release.

Depending upon the organization of the project, the release
manager may be a dedicated person. This person will be the
focal point for all releases. Another common strategy is to enlist
different people for a release depending upon participant avail-
ability. Therefore, the specifics of the release policy may change
over time as different people handle the release responsibilities.
The presence of documented release guidelines may assist in
helping new release managers understand what they should do.

2.2. Versioning

A release is identified by its associated version number. The
version number of a release signifies some property of the
release to the community. Typical purposes of versioning is to
identify the stability of the release.

Since open source projects often support concurrent devel-
opment, there may be parallel branches of development. Each
branch may be released independently and at different stages of
maturity. Therefore, it could be crucial to identify from which
branch a release originates by its version number.

Some projects denote the expected quality by placing a label
such as alpha or beta on releases. A project may then define the
expectations that go along with this label. Another quality often
identified by a version number is whether it is a release candi-
date. A release candidate may be produced before a release to
try to obtain feedback before an actual release is conducted.
These release candidates may be a good mechanism for increas-
ing the expectations of release quality.

2.3. Pre-release Testing

Oftentimes, a project has a set of criteria that a release must
satisfy before it can be called a release. These criteria may be
that the code passes an acceptance test, new features may need
to be present, or particular issues are resolved. This stage veri-
fies that the criteria has been met satisfactorily. Pre-release test-
ing should be conducted in a manner that promotes independent
parties to verify the results of pre-release testing.

2.4. Approval of Releases

A policy may be in place for approving releases before the
release is official. The management structure of the project may
agree that the requirements for a release have been met. This
may be strongly correlated with the amount of authority the

2

Release
Authority

Versioning
Pre-release

Testing
Approval of

Releases
Distribution Formats

Linux Kernel Designated Stable/unstable
Release

Candidates
Release
Manager

Mirrors
No official

contributions

Subversion
Subset of

committers
Pre-1.0 Regression

Release
Manager

Single site
User

contributed
Apache HTTP

Server
Committer Stable/unstable

Real-world,
Automated

Consensus Mirrors
Committer
contributed

Table 1: Release Management Strategies

release manager has. Release managers may be able to
approve a release independently. Or, the release may need
final approval from another group.

2.5. Distribution

Distribution consists of two aspects: visibility and acces-
sibility. After the release has been approved, the community
needs to be made aware of its presence. Furthermore, a via-
ble system needs to be in place to handle the demand for the
new release. Additionally, integrity of the release needs to
be ensured so that the community is confident that the
release has not been tampered before delivery.

2.6. Formats

A project may have guidelines that govern how packag-
ing of the release is accepted and generated. Ideally, enough
formats should be covered so that all users can deal with the
release in their preferred packaging format with a minimal
degree of hassle. In addition to providing the source to the
release, a release may also offer binaries. Depending upon
the implementation language, these binaries may be system-
dependent or system-independent.

2.7. Projects

For this paper, three open source projects were examined
to determine their release management practices. Each of
these projects is in a different domain and has varying pro-
cess and tools in place to support releases. A summary of
the strategies taken by each project is listed in Table 1.

3. Linux Kernel

The Linux kernel is at the heart of the GNU/Linux oper-
ating system. It was initially written by Linus Torvalds in
1991 and he still remains as the central authority figure.
However, Linus delegates his authority across many partici-
pants. There are kernel maintainers who are responsible for
a section of the kernel. The other position of authority is the
release manager for a branch.

The Linux kernel has multiple active branches open at
any one time. Due to Linux’s versioning system, each
branch can conduct a release independently. These branches
are usually at different stages of the software life cycle.
Once a release is made, it is then distributed across a set of
mirrors for the public to download.

3.1. Release Authority

The Linux kernel has a single designated release man-
ager for each open branch. The release manager has final
authority on all kernel releases. As denoted in Table 2, there
are currently three open release trees with different release
managers. A release managers for a tree does not have to
receive approval from any other release manager.

Usually, the release manager accepts patches from a
variety of maintainers. Each maintainer is responsible for a
particular component of the kernel. The general public
should submit patches to the maintainer rather than the
release manager. The changes are then integrated into the
official tree by the release manager.

Linux currently uses a decentralized repository system
utilizing BitKeeper. Previously, there was no way to main-
tain the current copy of the tree as viewed by the release
manager. Now, it is possible for a release manager to inte-
grate entire changesets from maintainers in an automated
fashion. This has reduced the amount of work that a release
maintainer spends on integrating patches.

Additionally, people are free to release kernels on their
own without the approval of the release manager. However,
these versions are not distributed in the same fashion as offi-
cial releases. Furthermore, these custom releases are usually
denoted by appending the author’s initials to the version
number from which the release originated.

3.2. Versioning

The Linux kernel uses a versioning scheme consisting of
three integers arranged in the following pattern: x.y.z. The
integer x in this pattern represents the major release num-
ber; y denotes the minor release number; and z indicates the
patch level of the release.

Due to the high level of activity in the Linux kernel,
there are usually at least two streams of development open
at any time. The stable releases are indicated by an even
minor release number, while unstable releases are denoted
by an odd minor release number.

Version Release Manager

2.2 Alan Cox

2.4 Marcelo Tosatti

2.5 Linus Torvalds

Table 2: Current Linux Kernel Release Managers

3

A challenge is presented in this scheme as to when a
release should be handed off to the next release manager.
Linus Torvalds is usually in charge of the unstable trees. In
the past, when an unstable tree becomes stable, Linus has
maintained release management for the first few stable
releases of this new tree. After he is confident in the stability
of the tree, he will name the new release manager and will
start on the next unstable tree.

3.3. Pre-release Testing

Rather than performing extensive testing on a release,
the Linux release model typically relies upon its user com-
munity to test a release before it is made official. Testing by
the release manager may be impractical since it is often
hard to obtain access to esoteric hardware configurations.
These release candidates are usually denoted with a -pre tag
appended to their version number. After the release candi-
date is distributed, feedback is solicited from the user com-
munity as to the stability of this release. This allows
preliminary feedback as to the portability and stability of
the release candidate.

3.4. Approval of Releases

Since the release manager has total authority over the
release, the Linux kernel release process does not require
approval by the community. However, it is usually desirable
to receive positive feedback from the users of a release can-
didate. If a problem is discovered in a release candidate, it
can usually be resolved before the final release.

3.5. Distribution

Official releases are indicated by an email to the linux-
kernel mailing list. Usually, a list of changes from the previ-
ous release are included in the email. These releases will be
made available via the kernel.org mirroring system[5]. Cur-
rently, there are 130 mirrors spread across the globe that
assist in the distribution of Linux kernel releases. These
mirrors are accessible via round-robin DNS entries keyed
off the ISO country code.

In order to ensure the integrity of the downloads, every
file available on the official mirrors are digitally signed
using an OpenPGP key[6]. This allows the end users to ver-
ify that the download was received correctly without tam-
pering.

3.6. Formats

For an official release, complete tarfiles of the kernel
source compressed with either gzip and bzip2 are available.
Also, incremental patches versus the last official release are
made available. For release candidates, patches are available
in a compressed format versus the prior official release.
Incremental to the last release candidate and changeset dif-
ferences from prior releases are usually available as well.

4. Subversion

Subversion is designed as a compelling replacement for
CVS[2]. The infrastructure and core developers are funded

by CollabNet. While many other developers contribute to
Subversion, the CollabNet developers act as a controlling
authority over the release process.

4.1. Release Authority

Due to the social organization of the Subversion project,
the developers from CollabNet act as the central authority in
the project. Therefore, all releases are conducted by the Col-
labNet developers. They have final say as to what makes it
into a release. The specific release manager for a release is
decided internally.

4.2. Versioning

Subversion is currently only available in alpha releases.
Due to its low maturity level, Subversion does not currently
have a strong versioning scheme. Issues are currently distin-
guished between being fixed before 1.0 and those that can
be completed after 1.0. However, the meaning of a 1.0 ver-
sion is not yet concrete.

4.3. Pre-release Testing

Subversion has a thorough automated test suite that per-
forms regression testing. Therefore, the developers can run
the test against a release candidate. If the candidate does not
pass the test suite, the release may be held until it success-
fully passes.

4.4. Approval of Releases

Since releases are conducted by a controlling authority,
the rest of the community does not get final approval for a
release. However, the CollabNet developers rely upon an
issue tracking system[1]. All issues that are slated to be
fixed in a release milestone must be closed before the corre-
sponding release can be made.

4.5. Distribution

Currently, Subversion does not utilize mirroring for
release distribution. All Subversion releases are served by a
single CollabNet server. Since access to the server is con-
trolled, the releases are not digitally signed by the develop-
ers. Announcement emails are sent to a special
announcements list as well as the regular development list.

4.6. Formats

Initially, a Subversion release is only accompanied by a
compressed gzip tar file corresponding to the source for a
particular release. However, the Subversion development
community encourages packaging contributions by its users
to increase the number of formats that are available for
download. Once the new format has been submitted and
approved for distribution, it is made publicly available.
Table 3 indicates current release formats that are available
for Subversion.

5. Apache HTTP Server

The Apache HTTP Server is currently the most popular

4

HTTP server[7]. The project is organized as a meritoc-
racy[4]. The Apache HTTP Server project guidelines define
three groups of participants: Apache HTTP Server Project
Management Committee members, Apache HTTP Server
Committers, and Apache Developers[9]. A member of the
Project Management Committee is responsible for setting
the direction of the project. A committer can make changes
to the master repository. And, a developer is defined as any-
one who contributes to the project.

5.1. Release Authority

Due to the decentralized organization of the Apache
HTTP Server Project, there is no designated authority that
will conduct every release. Each member of the Apache
HTTP Server Project Management Committee has the
authority to conduct a release. However, a volunteer from
this group may come forward and act as release manager.

Releases do not have predefined objectives or time-
frames. A release only occurs when there is enough interest
and a person is willing to take on the responsibility. Conse-
quently, this person has complete authority over what makes
it into a release. This volunteer is responsible for deciding
what patches and changes will be included. They are also
responsible for creating the release artifacts.

When a release manager starts to conduct a release, feed-
back from the community is usually solicited. Developers
may indicate that they have some changes that they wish to
see make it in to the release. The release manager can
decide if the release should be held for these changes.

5.2. Versioning

The Apache HTTP Server Project currently has two ver-
sioning models: stable and unstable[8]. A recent shift has
been made to follow a similar versioning scheme as the
Linux kernel (see 3.2): consisting of a major, minor, and
patch number.

A stable release is denoted by an even minor version
component. Stable releases are expected to be backwards-
compatible with prior stable releases with the same minor
version component. These releases should be expected to be
able to run in production without significant faults.

An unstable release is indicated by an odd minor version.
Generally, an unstable release may not have received the
same degree of testing as a stable release. These releases are
primarily meant for allowing third-party module developers
to provide early feedback, use new interfaces, and suggest
improvements.

5.3. Pre-release Testing

The release manager will usually issue a release candi-
date and announce it on the development mailing list and to
a specific testers list. Then, the other developers can test the

release and provide preliminary feedback. Each developer is
free to conduct their own tests on their preferred platforms.
The developers will report back with their quality interpre-
tation of the release candidate.

The release manager may also choose to run the auto-
mated test suite located in the httpd-test framework. This
repository is a set of Perl-based tests that are designed to
allow for regression testing. When an issue is resolved, a
developer may decide to also commit a regression test
check into the repository. Adding new test cases is not man-
datory, therefore the regression test suite is not as thorough
as it might otherwise be.

A stable release is usually preceded by a run of the
release candidate on the main apache.org web server. By
running the code in production for a period of time on a
high-traffic site, it allows real-world feedback to be
obtained. After a release has satisfactorily handled requests
for a few days, the community may feel more confident
about the stability of the release.

5.4. Approval of Releases

While the release manager has full authority over what
makes it into a release, the rest of the group must approve
the release for publication. A release can only be made pub-
lic after at least three committers have positively approved
the release on the development mailing list and more posi-
tive than negative votes are received. The release approval
voting system is in contrast to the code policy where nega-
tive votes can not be overriden[10],

5.5. Distribution

The Apache HTTP Server utilizes a system of volunteer
mirrors spread across the globe. Each mirror provides
releases for all Apache Software Foundation projects. The
releases are digitally signed by the release manager to
ensure the integrity of the files. A MD5 hash of each file is
also provided. After a release has been approved and the
release has been propagated to all of the mirrors, an email is
sent to a dedicated announcement list.

5.6. Formats

Initially, the releases are available as a tar file com-
pressed in either gzip or compress formats. This is achieved
by an automated script[11]. Additional formats are not
required to be available before a release is made public, but
other formats (such as Windows binaries and source for-
mats) are usually available before the announcement is sent.

In order to ensure the integrity of the releases, binaries
and other packaging contributions will not be accepted for
official distribution by any one that is not an active devel-
oper. Other parties may distribute the code in their other for-
mats on their own site, but these formats will not be
available officially.

6. Discussion

We have examined three open source projects and their
release management procedures. In the case of the release

GZip Tar files (source) RedHat 7.x/8.x RPMS

Mandrake 8.x RPMS Source RPMs

Windows Installer Windows Binaries

Table 3: Subversion Release Formats

5

authority, the extent of the decentralization seems to have a
direct impact on how the release authority is handled. On
projects with a controlling authority, the releases are han-
dled by a controlling authority. If the project has no control-
ling authority, it may be difficult to obtain authority.
However, a project with a decentralized organizational
structure may still be willing to have a dedicated release
authority.

For Linux, one of the underdeveloped areas of its release
management is its handling of pre-release testing. It is cur-
rently done in an informal manner. This may lead to prob-
lems being identified shortly after a release. Developing an
automated system where reports can be reported and exam-
ined may help.

Due to Subversion’s organizational structure, it currently
does not support geographic dispersal of distribution load.
As Subversion grows in popularity, it may encounter prob-
lems with scalability of distributing releases. However,
since Subversion is backed by a single organization, it bears
the responsibility to handle the distribution load. Another
issue with Subversion is that its versioning policies are not
as well defined as the other projects examined in this paper.
However, as Subversion approaches a 1.0 release, a more
formal definition of versioning may occur.

The largest problem in the Apache HTTP Server is the
decentralized release authority. This stems from the decen-
tralized organizational structure of the project. Releases
may not occur as frequently as the time commitment of par-
ticular volunteers may be sporadic. Assigning a dedicated
release manager like Linux does may not be realistic for
Apache HTTP Server. A potential side-effect of not having
a dedicated release manager is that releases only occur
when enough people have the time to produce a release.

We have applied this suggested taxonomy to three open
source projects and their release management practices. We
believe that this taxonomy may be beneficial to other
projects - both commercial and open source. This taxonomy
allows the breaking down of a typically confusing area of
software development in order to promote better under-
standing. By identifying areas of potential weakness, it
should be possible to improve the practices of a project.

7. Acknowledgments

This material is based upon work supported by the
National Science Foundation under Grant No. 0205724.

8. References

[1] CollabNet. IssueZilla. <http://subver-
sion.tigris.org/servlets/ProjectIssues>, HTML, 2003.

[2] CollabNet. Subversion. <http://subver-
sion.tigris.org/>, HTML, 2003.

[3] Cox, A. Cathedrals, Bazaars, and the Town Coun-
cil. <http://slashdot.org/features/98/10/13/1423253.shtml>,
Slashdot, HTML, 1998.

[4] Fielding, R.T. Shared Leadership in the Apache
Project. Communications of the ACM. 42(4), p. 42-3, 1999.

[5] Kernel.Org Organization. The Linux Kernel

Archive Mirror System. <http://www.kernel.org/mirrors/>,
HTML, 2002.

[6] Kernel.Org Organization. The Linux Kernel
Archive OpenPGP Signature. <http://www.kernel.org/sig-
nature.html>, HTML, 2002.

[7] Netcraft. Netcraft Web Server Survey. <http://
www.netcraft.com/survey/>, HTML, 2003.

[8] The Apache HTTP Server Project. Apache 2.x Ver-
sioning. <http://cvs.apache.org/viewcvs.cgi/httpd-2.0/VER-
SIONING?rev=HEAD>, HTML, 2002.

[9] The Apache HTTP Server Project. Apache HTTP
Server Project Guidelines and Voting Rules. <http://
httpd.apache.org/dev/guidelines.html>, HTML, 2003.

[10] The Apache HTTP Server Project. Apache HTTP
Server Release Guidelines. <http://httpd.apache.org/dev/
release.html>, HTML, 2003.

[11] The Apache HTTP Server Project. Apache HTTP
Server Release Script. <http://cvs.apache.org/viewcvs.cgi/
httpd-dist/tools/release.sh?rev=HEAD>, Shell Script, 2003.

