
Justin R. Erenkrantz
Institute for Software Research
University of California, Irvine

http://www.erenkrantz.com/oopsla/

Supporting Distributed and
Decentralized Projects:

Drawing Lessons from the
Open Source Community



Lots of successful open-source projects
Identify areas of impact

Decentralization and distribution
Examine techniques and tools

Variations in tools and processes
Helpful for starting new projects

What can we learn?



Independent collections form together
Should have self-interest at heart
Should believe can be beneficial

People will not be face-to-face
Global reach and openness
Time delays must be accounted for

Decentralized and Distributed



How do we decide what to do?
Techniques: Project leader, meritocracy
Exemplar: Linux, Apache
Enhancements: Recognizing tradeoffs

Decision-Making



Who will stand behind the product?
Techniques: for-profit, non-profit
Exemplar: PostgreSQL, FreeBSD
Enhancements: Introducing clarity

Accountability



Where do we exchange ideas?
Techniques: Mailing lists, asynchronous
Exemplar: All
Enhancements: Balancing granularity

Communication



How do I know what others are doing?
Techniques: Status updates, Discussion
Exemplar: Apache HTTP Server
Enhancements: Better tools

Awareness



Why was this activity performed?
Techniques: Archives, design documents
Exemplar: Perl
Enhancements: Creating standards

Historical Rationale



Why does the code look like this?
Techniques: Developer docs, examples
Exemplar: AbiWord
Enhancements: Synchronization

Design Rationale



How can we entice others to join?
Techniques: Clear tutorials, guidelines
Exemplar: KDE
Enhancements: Creating standards

Participation



How do we manage people?
Techniques: Annotating contributions
Exemplar: Python
Enhancements: Integration

Controlling Participation



How do people know what we’re doing?
Techniques: Public, optimistic resolution
Exemplar: All
Enhancements: Decentralized repositories

Source Code



How do users report problems?
Techniques: Soliciting developer help
Exemplar: Mozilla
Enhancements: Easy-to-use tools

Issue Tracking



How do users learn about the system?
Techniques: Distinct team, annotations
Exemplar: PHP
Enhancements: Separate code and docs

Documentation



How do we know if what we have is good?
Techniques: Reviews, automated tests
Exemplar: Subversion
Enhancements: Optimizing test runs

Testing



How do users receive the project?
Techniques: Mirroring, versioning
Exemplar: Debian
Enhancements: Managing distributions

Release Management



Variety of projects and domains examined 
Variety of techniques and tools used
Only a few areas have consensus
Beginning of a roadmap for adoption

Discussion


